zoukankan      html  css  js  c++  java
  • DGL学习(一):使用DGL跑一个最简单的GCN

    使用没有节点特征的图来跑DGL (输入特征为节点编号的embedding)

    安装DGL :

    pip install dgl

    所需要的包

    import dgl
    import numpy as np
    import networkx as nx
    import matplotlib.pyplot as plt
    import torch
    import torch.nn as nn
    import torch.nn.functional as F

    构建无向图:

    def build_karate_club_graph():
        # All 78 edges are stored in two numpy arrays. One for source endpoints
        # while the other for destination endpoints.
        src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
                        10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
                        25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
                        32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
                        33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
        dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
                        5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
                        24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
                        29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
                        31, 32])
        # Edges are directional in DGL; Make them bi-directional.
        u = np.concatenate([src, dst])
        v = np.concatenate([dst, src])
        # Construct a DGLGraph
        return dgl.DGLGraph((u, v))

    G = build_karate_club_graph()
    print("G中节点数 %d."% G.number_of_nodes()) # 34
    print("G中边数 %d."% G.number_of_edges()) # 156

    转为networkX进行可视化

    def visual(G):
        # 可视化
        nx_G = G.to_networkx().to_undirected()
        pos = nx.kamada_kawai_layout(nx_G) ## 生成节点位置
        nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]])
        plt.pause(10)

     对每个节点做embedding并作为GCN的输入特征:

    ## 对 34 个节点做embedding
    embed = nn.Embedding(34, 5)  # 34 nodes with embedding dim equal to 5
    print(embed.weight)
    G.ndata['feat'] = embed.weight

    训练GCN:

    def train(G, inputs, embed, labeled_nodes,labels):
        net = GCN(5,5,2)
        import itertools
    
        optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01)
        all_logits = []
        for epoch in range(50):
            logits = net(G, inputs)
            # we save the logits for visualization later
            all_logits.append(logits.detach()) # detach代表从当前计算图中分离下来的
            logp = F.log_softmax(logits, 1)
            # 半监督学习, 只使用标记的节点计算loss
            loss = F.nll_loss(logp[labeled_nodes], labels)
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))
    
    
        print(all_logits)

    train(G, embed.weight, embed, torch.tensor([0,33]), torch.tensor([0,1]))
    Epoch 0 | Loss: 0.9247
    Epoch 1 | Loss: 0.8673
    Epoch 2 | Loss: 0.8160
    Epoch 3 | Loss: 0.7713
    Epoch 4 | Loss: 0.7328
    Epoch 5 | Loss: 0.6999
    Epoch 6 | Loss: 0.6748
    Epoch 7 | Loss: 0.6551
    Epoch 8 | Loss: 0.6392
    Epoch 9 | Loss: 0.6252
    Epoch 10 | Loss: 0.6120
    Epoch 11 | Loss: 0.5989
    Epoch 12 | Loss: 0.5854
    Epoch 13 | Loss: 0.5713
    Epoch 14 | Loss: 0.5559
    Epoch 15 | Loss: 0.5391
    Epoch 16 | Loss: 0.5210
    Epoch 17 | Loss: 0.5031
    Epoch 18 | Loss: 0.4867
    Epoch 19 | Loss: 0.4696
    Epoch 20 | Loss: 0.4522
    Epoch 21 | Loss: 0.4347
    Epoch 22 | Loss: 0.4168
    Epoch 23 | Loss: 0.3987
    Epoch 24 | Loss: 0.3808
    Epoch 25 | Loss: 0.3627
    Epoch 26 | Loss: 0.3448
    Epoch 27 | Loss: 0.3269
    Epoch 28 | Loss: 0.3090
    Epoch 29 | Loss: 0.2913
    Epoch 30 | Loss: 0.2738
    Epoch 31 | Loss: 0.2566
    Epoch 32 | Loss: 0.2396
    Epoch 33 | Loss: 0.2230
    Epoch 34 | Loss: 0.2069
    Epoch 35 | Loss: 0.1913
    Epoch 36 | Loss: 0.1762
    Epoch 37 | Loss: 0.1618
    Epoch 38 | Loss: 0.1479
    Epoch 39 | Loss: 0.1347
    Epoch 40 | Loss: 0.1224
    Epoch 41 | Loss: 0.1111
    Epoch 42 | Loss: 0.1007
    Epoch 43 | Loss: 0.0910
    Epoch 44 | Loss: 0.0822
    Epoch 45 | Loss: 0.0742
    Epoch 46 | Loss: 0.0670
    Epoch 47 | Loss: 0.0605
    Epoch 48 | Loss: 0.0546
    Epoch 49 | Loss: 0.0494
    View Code

    对每轮的分类结果进行可视化

    def draw(i):
        cls1color = '#00FFFF'
        cls2color = '#FF00FF'
        pos = {}
        colors = []
        for v in range(34):
            pos[v] = all_logits[i][v].numpy()
            cls = pos[v].argmax()
            colors.append(cls1color if cls else cls2color)
        ax.cla()
        ax.axis('off')
        ax.set_title('Epoch: %d' % i)
        nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
                         with_labels=True, node_size=300, ax=ax)
    nx_G = G.to_networkx().to_undirected()
    fig = plt.figure(dpi=150)
    fig.clf()
    ax = fig.subplots()
    for i in range(50):
        draw(i)
        plt.pause(0.2)
    
    plt.show()

    完整代码:

    import dgl
    import numpy as np
    import networkx as nx
    import matplotlib.pyplot as plt
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    def build_karate_club_graph():
        # All 78 edges are stored in two numpy arrays. One for source endpoints
        # while the other for destination endpoints.
        src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
                        10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
                        25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
                        32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
                        33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
        dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
                        5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
                        24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
                        29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
                        31, 32])
        # Edges are directional in DGL; Make them bi-directional.
        u = np.concatenate([src, dst])
        v = np.concatenate([dst, src])
        # Construct a DGLGraph
        return dgl.DGLGraph((u, v))
    
    def visual(G):
        # 可视化
        nx_G = G.to_networkx().to_undirected()
        pos = nx.kamada_kawai_layout(nx_G) ## 生成节点位置
        nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]])
        plt.pause(10)
    
    from dgl.nn.pytorch import GraphConv
    class GCN(nn.Module):
        def __init__(self, in_feats, hidden_size, num_classes):
            super(GCN, self).__init__()
            self.conv1 = GraphConv(in_feats, hidden_size)
            self.conv2 = GraphConv(hidden_size, num_classes)
    
        def forward(self, g, inputs):
            h = self.conv1(g, inputs)
            h = torch.relu(h)
            h = self.conv2(g, h)
            return h
    
    def train(G, inputs, embed, labeled_nodes,labels):
        net = GCN(5,5,2)
        import itertools
    
        optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01)
        all_logits = []
        for epoch in range(50):
            logits = net(G, inputs)
            # we save the logits for visualization later
            all_logits.append(logits.detach()) # detach代表从当前计算图中分离下来的
            logp = F.log_softmax(logits, 1)
            # 半监督学习, 只使用标记的节点计算loss
            loss = F.nll_loss(logp[labeled_nodes], labels)
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))
    
    
        print(all_logits)
    
    
        def draw(i):
            cls1color = '#00FFFF'
            cls2color = '#FF00FF'
            pos = {}
            colors = []
            for v in range(34):
                pos[v] = all_logits[i][v].numpy()
                cls = pos[v].argmax()
                colors.append(cls1color if cls else cls2color)
            ax.cla()
            ax.axis('off')
            ax.set_title('Epoch: %d' % i)
            nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
                             with_labels=True, node_size=300, ax=ax)
        nx_G = G.to_networkx().to_undirected()
        fig = plt.figure(dpi=150)
        fig.clf()
        ax = fig.subplots()
        for i in range(50):
            draw(i)
            plt.pause(0.2)
    
        plt.show()
    def main():
        G = build_karate_club_graph()
        print("G中节点数 %d."% G.number_of_nodes())
        print("G中边数 %d."% G.number_of_edges())
    
        visual(G)
    
        ## 对 34 个节点做embedding
        embed = nn.Embedding(34, 5)  # 34 nodes with embedding dim equal to 5
        print(embed.weight)
        G.ndata['feat'] = embed.weight
    
        # print out node 2's input feature
        print(G.ndata['feat'][2])
        # print out node 10 and 11's input features
        print(G.ndata['feat'][[10, 11]])
    
        train(G, embed.weight, embed, torch.tensor([0,33]), torch.tensor([0,1]))
    
    
    main()
  • 相关阅读:
    ue父子组件的数据传递示例
    vue.js 组件之间传递数据
    Vue2.0子同级组件之间数据交互
    assets 和static的区别
    Vue中src属性绑定的问题
    css3设置背景图片的大小
    如何在HTML中插入空格
    css背景图片的设置
    vue动态组件 互相之间传输数据 和指令的定义
    webservice的优缺点
  • 原文地址:https://www.cnblogs.com/liyinggang/p/13359886.html
Copyright © 2011-2022 走看看