zoukankan      html  css  js  c++  java
  • poj 1556(迪杰斯特拉+计算几何)

    The Doors
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7641   Accepted: 2987

    Description

    You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length.

    Input

    The input data for the illustrated chamber would appear as follows.

    2
    4 2 7 8 9
    7 3 4.5 6 7

    The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

    Output

    The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

    Sample Input

    1
    5 4 6 7 8
    2
    4 2 7 8 9
    7 3 4.5 6 7
    -1

    Sample Output

    10.00
    10.06

    不错的一个题.
    题意:求(0,5)和(10,5)两个点之间的最短距离
    先把每个点和每条线段记录下来,然后每两个点之间如果能够直连就根据下标记录下来距离(这里要判断两个点连成的线段是否与其之间的所有线段有交点,有交点就不能直连,我用了两个变量对自身线段做了特判)然后用最短路算法进行求解。三层循环0MS,这题数据也是水。
    #include <iostream>
    #include <cstdio>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    
    struct Point{
        double x,y;
    }p[400];
    struct Line{
        Point a,b;
    }line[400];
    int n;
    const double INF = 9999999;
    double mp[400][400];
    double low[400];
    bool vis[400];
    double dijstra(int n){
        memset(vis,false,sizeof(vis));
        memset(low,0,sizeof(low));
        int pos = 0;
        vis[pos]=true;
        for(int i=0;i<=n;i++){
            low[i] = mp[pos][i];
        }
        for(int i=0;i<n-1;i++){
            int mi = INF;
            for(int j=0;j<=n;j++){
                if(!vis[j]&&mi>low[j]){
                    pos = j;
                    mi = low[j];
                }
            }
            vis[pos] = true;
            for(int j=0;j<=n;j++){
                if(!vis[j]&&mp[pos][j]+low[pos]<low[j]){
                    low[j] = mp[pos][j]+low[pos];
                }
            }
        }
        return low[n];
    }
    double dis(Point a,Point b){
        return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    }
    
    ///叉积
    double mult(Point a, Point b, Point c)
    {
        return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
    }
    
    ///a, b为一条线段两端点c, d为另一条线段的两端点 相交返回true, 不相交返回false
    bool isCross(Point a, Point b, Point c, Point d)
    {
        if (max(a.x,b.x)<min(c.x,d.x))return false;
        if (max(a.y,b.y)<min(c.y,d.y))return false;
        if (max(c.x,d.x)<min(a.x,b.x))return false;
        if (max(c.y,d.y)<min(a.y,b.y))return false;
        if (mult(c, b, a)*mult(b, d, a)<0)return false;
        if (mult(a, d, c)*mult(d, b, c)<0)return false;
        return true;
    }
    void addline(double x,double y1,double y2,int &k){
        line[k].a.x = line[k].b.x =x;
        line[k].a.y = y1;
        line[k].b.y = y2;
        k++;
    }
    
    
    int main()
    {
        while(scanf("%d",&n)!=EOF&&n!=-1){
            int k = 0,m=1;  ///k代表线段的条数,m代表点的个数
            p[0].x = 0,p[0].y = 5; ///起点
            for(int i=0;i<n;i++){
                double x,y1,y2,y3,y4;
                scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
                p[m].x =x,p[m++].y = y1;
                p[m].x =x,p[m++].y = y2;
                p[m].x =x,p[m++].y = y3;
                p[m].x =x,p[m++].y = y4;
                addline(x,0,y1,k);
                addline(x,y2,y3,k);
                addline(x,y4,10,k);
            }
            p[m].x = 10,p[m].y = 5; ///终点
            for(int i=0;i<=m;i++){
                for(int j=0;j<=m;j++) mp[i][j]=INF;
            }
            for(int i=0;i<=m;i++){
                for(int j=i+1;j<=m;j++){
                    Line l;
                    l.a.x = p[i].x,l.a.y = p[i].y;
                    l.b.x = p[j].x,l.b.y = p[j].y;
                    if(l.a.x==l.b.x) continue;
                    int temp,temp1;
                    for(int t=0;t<k;t++){ ///特判
                        if(line[t].a.x==p[j].x&&line[t].a.y==p[j].y) {
                            temp = t;break;
                        }
                        if(line[t].b.x==p[j].x&&line[t].b.y==p[j].y) {
                            temp = t;break;
                        }
                    }
                     for(int t=0;t<k;t++){
                        if(line[t].a.x==p[i].x&&line[t].a.y==p[i].y) {
                            temp1 = t;break;
                        }
                        if(line[t].b.x==p[i].x&&line[t].b.y==p[i].y) {
                            temp1 = t;break;
                        }
                    }
                    bool flag = true;
                    for(int t=0;t<k;t++){
                        if(t==temp||t==temp1) continue;
                        if(isCross(l.a,l.b,line[t].a,line[t].b)){
                            flag = false;
                            break;
                        }
                    }
                    if(flag){
                        mp[i][j] = mp[j][i] = dis(p[i],p[j]);
                    }
                }
            }
            double ans = dijstra(m);
            printf("%.2lf
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    Directx11 HelloWorld之DirectCompute
    TortoiseSVN使用简介
    图形学的坐标转换问题(局部到世界坐标系,世界到观察坐标系)
    Directx11中获取HLSL中变量一些问题
    Mathematics for Computer Graphics
    Nvidia给力 Android游戏革命来临 有能力超iPhone
    D3d10和D3d11中Map()函数用法一点心得总结
    GPU开始无处不在,加速火狐浏览器4.0
    Delphi多媒体设计之TMediaPlayer组件(四)
    Delphi多媒体设计之TMediaPlayer组件(一)
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5440793.html
Copyright © 2011-2022 走看看