zoukankan      html  css  js  c++  java
  • poj 3348(凸包面积)

    Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 8063   Accepted: 3651

    Description

    Your friend to the south is interested in building fences and turning plowshares into swords. In order to help with his overseas adventure, they are forced to save money on buying fence posts by using trees as fence posts wherever possible. Given the locations of some trees, you are to help farmers try to create the largest pasture that is possible. Not all the trees will need to be used.

    However, because you will oversee the construction of the pasture yourself, all the farmers want to know is how many cows they can put in the pasture. It is well known that a cow needs at least 50 square metres of pasture to survive.

    Input

    The first line of input contains a single integer, n (1 ≤ n ≤ 10000), containing the number of trees that grow on the available land. The next n lines contain the integer coordinates of each tree given as two integers x and y separated by one space (where -1000 ≤ x, y ≤ 1000). The integer coordinates correlate exactly to distance in metres (e.g., the distance between coordinate (10; 11) and (11; 11) is one metre).

    Output

    You are to output a single integer value, the number of cows that can survive on the largest field you can construct using the available trees.

    Sample Input

    4
    0 0
    0 101
    75 0
    75 101

    Sample Output

    151

    题意:在一个树林里面养牛,每头牛需要50平方米的空间,问你总共可以养多少牛?
    题解:凸包面积/50
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <math.h>
    #include <algorithm>
    #include <stdlib.h>
    using namespace std;
    const int N = 10005;
    const double eps = 1e-8;
    struct Point {
        int x,y;
    }p[N],Stack[N];
    int n;
    int cross(Point a,Point b,Point c){
        return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
    }
    double getarea(Point a,Point b,Point c){
        return cross(a,b,c)/2.0;
    }
    double dis(Point a,Point b){
        return  sqrt((double)((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
    }
    int cmp(Point a,Point b){
        if(cross(a,b,p[0])>0) return 1;
        if(cross(a,b,p[0])==0&&dis(b,p[0])-dis(a,p[0])>eps) return 1;
        return 0;
    }
    int Graham(){
        int k=0;
        for(int i=1;i<n;i++){
            if(p[i].y<p[k].y||(p[i].y==p[k].y)&&(p[i].x<p[k].x)) k=i;
        }
        swap(p[0],p[k]);
        sort(p+1,p+n,cmp);
        int top =2;
        Stack[0] = p[0];
        Stack[1] = p[1];
        Stack[2] = p[2];
        for(int i=3;i<n;i++){
            while(top>=1&&cross(p[i],Stack[top],Stack[top-1])>=0) top--;
            Stack[++top] = p[i];
        }
        double area = 0;
        for(int i=1;i<top;i++){
            area+=getarea(Stack[i],Stack[i+1],Stack[0]); ///这里打成p..WA了几次..
        }
        return floor(area/50);
    }
    int main()
    {
        while(scanf("%d",&n)!=EOF){
            for(int i=0;i<n;i++){
                scanf("%d%d",&p[i].x,&p[i].y);
            }
            if(n==1||n==2) {
                printf("0
    ");
                continue;
            }
            int ans =  Graham();
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    了解DockerFile
    容器数据卷
    Docker镜像讲解
    Java语法学习笔记:多态
    决策树之分类与回归
    python数据分析回归算法
    python之斐波那契序列算法的总结
    pandas 关于数据分组和聚合
    pandas中关于数据合并join,merge
    scrapy爬虫之断点续爬,增量爬取,断网急救
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5451115.html
Copyright © 2011-2022 走看看