Segment set
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4479 Accepted Submission(s): 1672
Problem Description
A
segment and all segments which are connected with it compose a segment
set. The size of a segment set is the number of segments in it. The
problem is to find the size of some segment set.
Input
In
the first line there is an integer t - the number of test case. For
each test case in first line there is an integer n (n<=1000) - the
number of commands.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
Output
For each Q-command, output the answer. There is a blank line between test cases.
Sample Input
1
10
P 1.00 1.00 4.00 2.00
P 1.00 -2.00 8.00 4.00
Q 1
P 2.00 3.00 3.00 1.00
Q 1
Q 3
P 1.00 4.00 8.00 2.00
Q 2
P 3.00 3.00 6.00 -2.00
Q 5
Sample Output
1
2
2
2
5
题意:求某根线段与其在同一个集合的线段的数量。
题解:线段相交+并查集。。但是我没想清楚为什么按我注释的那样写就WA了。。明明只是顺序不同
#include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> #include <math.h> using namespace std; const int N = 1005; struct Point { double x,y; }; struct Line { Point a,b; } line[N]; double cross(Point a,Point b,Point c) { return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x); } bool isCross(Point a, Point b, Point c, Point d) { if (cross(c, b, a)*cross(b, d, a)<0)return false; if (cross(a, d, c)*cross(d, b, c)<0)return false; return true; } int father[N],cnt[N]; int _find(int x) { if(x==father[x]) return x; return _find(father[x]); } int main() { int tcase; scanf("%d",&tcase); while(tcase--) { int n; scanf("%d",&n); int k =1; for(int i=1; i<=N; i++) { father[i]=i; cnt[i]=1; } while(n--) { char c[2]; scanf("%s",c); if(c[0]=='P') { scanf("%lf%lf%lf%lf",&line[k].a.x,&line[k].a.y,&line[k].b.x,&line[k].b.y); k++; for(int i=1; i<k; i++) { if(isCross(line[i].a,line[i].b,line[k-1].a,line[k-1].b)) { int x = _find(k-1); int y = _find(i); if(x!=y) { father[x] = y; cnt[y]+=cnt[x]; } } } } if(c[0]=='Q') { int num; scanf("%d",&num); /* for(int i=1; i<k; i++) //没想明白 { if(isCross(line[i].a,line[i].b,line[num].a,line[num].b)) { int x = _find(num); int y = _find(i); if(x!=y) { father[x] = y; cnt[y]+=cnt[x]; } } }*/ printf("%d ",cnt[_find(num)]); } } if(tcase) printf(" "); } }