A/B
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3890 Accepted Submission(s): 2981
Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2
1000 53
87 123456789
Sample Output
7922
6060
Author
xhd
化一下之后就变成了 ((9973*k+n)/b)%9973 令inv = b-1 式子就变成了 n*inv%9973
#include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; typedef long long LL; const LL mod = 9973; LL extend_gcd(LL a,LL b,LL &x,LL &y){ if(!b){ x=1,y = 0; return a; }else{ LL x1,y1; LL d = extend_gcd(b,a%b,x1,y1); x = y1; y = x1 - a/b*y1; return d; } } LL mod_reverse(LL a,LL n) { LL x,y; LL d=extend_gcd(a,n,x,y); if(d==1) return (x%n+n)%n; else return -1; } int main() { int tcase; scanf("%d",&tcase); while(tcase--){ LL n,b; scanf("%lld%lld",&n,&b); LL x,y; LL inv = mod_reverse(b,mod); printf("%lld ",inv*n%mod); } return 0; }