zoukankan      html  css  js  c++  java
  • hdu 2462(欧拉定理+高精度快速幂模)

    The Luckiest number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 980    Accepted Submission(s): 301


    Problem Description
    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
     
    Input
    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.
     
    Output
    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
     
    Sample Input
    8 11 16 0
     
    Sample Output
    Case 1: 1 Case 2: 2 Case 3: 0
    做这个题的前提有两个公式:1.(a/b)%mod = a%(b*mod)/b%mod  2.待证明的公式: ax%b = 0 => a%(b/gcd(x,b)) 详情参见我的上一篇博客
    这个题我们可以化成 (8*(10^k-1)/9)%L = 0 ---->  8*(10^k-1)%(9*L) 求出 d = gcd(9*L)
    然后根据2化成 (10^k-1) % (9*L/d) => (10^k)%(9*L) = 1 又可以根据欧拉定理来求解了。。和我的上一题差不多。。但是这个题更坑,pow_mod是满足不了精度的,总之
    参考了n多博客和资料才弄出这题。。高精度快速幂模模板get
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <iostream>
    #include <stdlib.h>
    #include <math.h>
    using namespace std;
    typedef long long LL;
    LL e[1000][2];
    LL phi(LL x)
    {
        LL ans=x;
        for(LL i=2; i*i<=x; i++)
            if(x%i==0)
            {
                ans=ans/i*(i-1);
                while(x%i==0) x/=i;
            }
        if(x>1)
            ans=ans/x*(x-1);
        return ans;
    }
    LL gcd(LL a,LL b)
    {
        return b==0?a:gcd(b,a%b);
    }
    void devide(LL ans,int &id)
    {
        for(LL i=2; i*i<=ans; i++) ///分解质因数
        {
            if(ans%i==0)
            {
                e[id][0]=i;
                e[id][1]=0;
                while(ans%i==0) ans/=i,e[id][1]++;
                id++;
            }
        }
        if(ans>1)
        {
            e[id][0]=ans;
            e[id++][1]=1;
        }
    }
    LL modular_multi(LL a, LL b, LL c) {/// a * b % c
        LL res, temp;
        res = 0, temp = a % c;
        while (b) {
            if (b & 1) {
                res += temp;
                if (res >= c) {
                    res -= c;
                }
            }
            temp <<= 1;
            if (temp >= c) {
                temp -= c;
            }
            b >>= 1;
        }
        return res;
    }
    LL modular_exp(LL a, LL b, LL c) { ///a ^ b % c 改成mod_pow就不行,中间发生了溢出,还是这个模板靠谱
        LL res, temp;
        res = 1 % c, temp = a % c;
        while (b) {
            if (b & 1) {
                res = modular_multi(res, temp, c);
            }
            temp = modular_multi(temp, temp, c);
            b >>= 1;
        }
        return res;
    }
    int main()
    {
        LL l;
        int t= 1;
        while(~scanf("%lld",&l),l)
        {
            printf("Case %d: ",t++);
            LL d = gcd(8,9*l);
            LL a = 9*l/d;
            if(gcd(a,10)!=1){
                printf("0
    ");
            }else{
                LL ans = phi(a);
                int id = 0;
                devide(ans,id);
                for(int i=0;i<id;i++){
                    for(int j=0;j<e[i][1];j++){
                        if(modular_exp(10,ans/e[i][0],a)==1) ans/=e[i][0];
                    }
                }
                printf("%lld
    ",ans);
            }
        }
        return 0;
    }
     
  • 相关阅读:
    【面试题】Round A China New Grad Test 2014总结
    【C++】指针数组和数组指针
    快速排序算法递归和非递归实现
    StringTokenizer的用法
    java实时监测文件夹的变化,允许多用户同时访问,完成文件转移
    java统计当前在线数
    KMP算法的一种实现
    java.io.PrintWriter
    OOAOODOOP
    Java 编程技术中汉字问题的分析及解决
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5536093.html
Copyright © 2011-2022 走看看