zoukankan      html  css  js  c++  java
  • hdu 5086(递推)

    Revenge of Segment Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1541    Accepted Submission(s): 552


    Problem Description
    In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
    A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
    ---Wikipedia

    Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
     
    Input
    The first line contains a single integer T, indicating the number of test cases.

    Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

    [Technical Specification]
    1. 1 <= T <= 10
    2. 1 <= N <= 447 000
    3. 0 <= Ai <= 1 000 000 000
     
    Output
    For each test case, output the answer mod 1 000 000 007.
     
    Sample Input
    2 1 2 3 1 2 3
     
    Sample Output
    2 20
    Hint
    For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
     
    Source
     
    题意:求一个序列所有的连续子序列之和。
    题解:假设序列为 1 2 3
    那么合法序列有:
    1 第一项
    1 2 第二项
    2
    1 2 3 第三项
    2 3
    3
    dp[i]代表第i项 那么我们可以看出 dp[i] = dp[i-1]+i*a[i]
    最终答案累加即可。
    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <string.h>
    using namespace std;
    typedef long long LL;
    const int mod = 1000000007;
    const int N = 447005;
    int n;
    LL a[N];
    LL dp[N];
    int main()
    {
    
        int tcase;
        scanf("%d",&tcase);
        while(tcase--){
            scanf("%d",&n);
            for(int i=1;i<=n;i++){
                scanf("%lld",&a[i]);
            }
            dp[1]  = a[1];
            for(int i=2;i<=n;i++){
                dp[i] = (dp[i-1] + (i*a[i])%mod)%mod;
            }
            LL ans = 0;
            for(int i=1;i<=n;i++){
                ans = (ans+dp[i])%mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    Delphi
    delphi trayIcon控件,如何实现窗口最小化的时候到系统托盘
    delphi2010自带 TTrayIcon 托盘图标控件使用方法
    通过例子来简单了解下TProgressBar的使用。 pas文件程序如下
    ORA-12154,ORA-12560解决过程
    博客备份小工具3
    各大招聘网站信息实时查询浏览
    IE7中使用Jquery动态操作name问题
    js问题杂记
    动态sql
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5657928.html
Copyright © 2011-2022 走看看