zoukankan      html  css  js  c++  java
  • hdu 5748(LIS)

    Bellovin

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 302    Accepted Submission(s): 148


    Problem Description
    Peter has a sequence a1,a2,...,an and he define a function on the sequence -- F(a1,a2,...,an)=(f1,f2,...,fn), where fi is the length of the longest increasing subsequence ending with ai.

    Peter would like to find another sequence b1,b2,...,bn in such a manner that F(a1,a2,...,an) equals to F(b1,b2,...,bn). Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.

    The sequence a1,a2,...,an is lexicographically smaller than sequence b1,b2,...,bn, if there is such number i from 1 to n, that ak=bk for 1k<i and ai<bi.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first contains an integer n (1n100000) -- the length of the sequence. The second line contains n integers a1,a2,...,an (1ai109).
     
    Output
    For each test case, output n integers b1,b2,...,bn (1bi109) denoting the lexicographically smallest sequence.
     
    Sample Input
    3 1 10 5 5 4 3 2 1 3 1 3 5
     
    Sample Output
    1 1 1 1 1 1 1 2 3
     
    题意:求以ai(0<i<n)结尾的最长上升子序列的个数.
    题解:在LIS的O(n*log(n))的模板里面找到加一个dp数组记录每一位的最长上升子序列个数,顺序输出即可。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include <algorithm>
    using namespace std;
    const int N = 100005;
    int a[N];
    int dp[N],c[N];
    
    int main()
    {
        int tcase;
        scanf("%d",&tcase);
        while(tcase--)
        {
            int n;
            scanf("%d",&n);
            for(int i=1; i<=n; i++)
            {
                scanf("%d",&a[i]);
            }
            int MAX = 1,j=1;
            c[1] = a[1];
            dp[1] = 1;
            for(int i=2; i<=n; i++)
            {
                if(a[i]<=c[1]) j = 1;
                else if(a[i]>c[MAX]) j = ++MAX;
                else j = lower_bound(c+1,c+1+MAX,a[i])-c;
                c[j] = a[i];
                dp[i] = j;
            }
            for(int i=1; i<n; i++)
            {
                printf("%d ",dp[i]);
            }
            printf("%d
    ",dp[n]);
        }
        return 0;
    }
  • 相关阅读:
    插入排序
    阅读书单 2012 8月至12月
    sed学习1
    sed入门(一直在改变系列2)
    linux find资料(一直在改变系列4)
    awk入门(一直在改变系列1)
    分治算法
    shell脚本知识点1(一直在改变系列3)
    选择排序(selection sort)
    英语单词循环记忆第一期(自学使用)
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5700216.html
Copyright © 2011-2022 走看看