zoukankan      html  css  js  c++  java
  • hdu 3416(最大流+最短路)

    Marriage Match IV

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3368    Accepted Submission(s): 1001


    Problem Description
    Do not sincere non-interference。
    Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.


    So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
     
    Input
    The first line is an integer T indicating the case number.(1<=T<=65)
    For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

    Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

    At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
    There may be some blank line between each case.
     
    Output
    Output a line with a integer, means the chances starvae can get at most.
     
    Sample Input
    3 7 8 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 5 7 1 6 7 1 1 7 6 7 1 2 1 2 3 1 1 3 3 3 4 1 3 5 1 4 6 1 5 6 1 1 6 2 2 1 2 1 1 2 2 1 2
     
    Sample Output
    2 1 1
     
    题意:给定一幅有向图,里面有 n 个点,m条边,现在一个人想从 A点走到 B点,每次都要走最短路,但是最短路上的每一段路都只能走一回,这次走了下次就不能再走这里了,问A->B最多有多少种走法?
    题解:假设 u 和 v 是最短路上的点,那么建一幅新图,我们就在 u - v 之间连一条容量为 1的边就好了,然后从A—>B做最大流,但是,如何判断 u - v是最短路上的点呢?所以我们从A点做一次SPFA,求出A点到每一点的距离,然后反向建图,从B点也做相同的操作,如果 dis[A][u] + edge[u][v] + dis1[B][v] = dis[A][B],那么 u - v就是最短路上的点了。边要开200000,因为Dinic算法要建反向边,所以开两倍.
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <algorithm>
    using namespace std;
    const int INF = 999999999;
    const int N = 1005;
    const int M = 200005;
    struct Edge{
        int v,w,next;
    }edge[M];
    int head[N];
    int level[N];
    int tot;
    void init()
    {
        memset(head,-1,sizeof(head));
        tot=0;
    }
    void addEdge(int u,int v,int w,int &k)
    {
        edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
        edge[k].v = u,edge[k].w=0,edge[k].next=head[v],head[v]=k++;
    }
    int BFS(int src,int des)
    {
        queue<int>q;
        memset(level,0,sizeof(level));
        level[src]=1;
        q.push(src);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            if(u==des) return 1;
            for(int k = head[u]; k!=-1; k=edge[k].next)
            {
                int v = edge[k].v;
                int w = edge[k].w;
                if(level[v]==0&&w!=0)
                {
                    level[v]=level[u]+1;
                    q.push(v);
                }
            }
        }
        return -1;
    }
    int dfs(int u,int des,int increaseRoad){
        if(u==des||increaseRoad==0) {
            return increaseRoad;
        }
        int ret=0;
        for(int k=head[u];k!=-1;k=edge[k].next){
            int v = edge[k].v,w=edge[k].w;
            if(level[v]==level[u]+1&&w!=0){
                int MIN = min(increaseRoad-ret,w);
                w = dfs(v,des,MIN);
                if(w > 0)
                {
                    edge[k].w -=w;
                    edge[k^1].w+=w;
                    ret+=w;
                    if(ret==increaseRoad){
                        return ret;
                    }
                }
                else level[v] = -1;
                if(increaseRoad==0) break;
            }
        }
        if(ret==0) level[u]=-1;
        return ret;
    }
    int Dinic(int src,int des)
    {
        int ans = 0;
        while(BFS(src,des)!=-1) ans+=dfs(src,des,INF);
        return ans;
    }
    struct Edge1{
        int v,w,next;
    }edge1[M],edge2[M];
    int head1[N],head2[N];
    int tot1,tot2;
    int n,m,a,b;
    void addEdge1(int u,int v,int w,int &k){
        edge1[k].v = v,edge1[k].w=w,edge1[k].next = head1[u],head1[u]=k++;
    }
    void addEdge2(int u,int v,int w,int &k){
        edge2[k].v = v,edge2[k].w=w,edge2[k].next = head2[u],head2[u]=k++;
    }
    void init1(){
        memset(head1,-1,sizeof(head1));
        tot1 = 0;
    }
    void init2(){
        memset(head2,-1,sizeof(head2));
        tot2 = 0;
    }
    int low[2][N];
    bool vis[N];
    void spfa(int s,int t,int flag,int *head,Edge1 edge[]){
        for(int i=1;i<=n;i++){
            low[flag][i] = INF;
            vis[i] = false;
        }
        low[flag][s] = 0;
        queue<int >q;
        q.push(s);
        while(!q.empty()){
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int k=head[u];k!=-1;k=edge[k].next){
                int v = edge[k].v,w=edge[k].w;
                if(low[flag][v]>low[flag][u]+w){
                    low[flag][v] = low[flag][u]+w;
                    if(!vis[v]){
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
    }
    int main()
    {
        int tcase;
        scanf("%d",&tcase);
        while(tcase--){
            init1();
            init2();
            scanf("%d%d",&n,&m);
            for(int i=1;i<=m;i++){
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                if(u==v) continue;
                addEdge1(u,v,w,tot1);
                addEdge2(v,u,w,tot2); ///反向边
            }
            scanf("%d%d",&a,&b);
            spfa(a,b,0,head1,edge1); ///a->b 第一遍
            spfa(b,a,1,head2,edge2); ///b->a 第二遍
            init();
            for(int i=1;i<=n;i++){
                for(int j=head1[i];j!=-1;j=edge1[j].next){
                    int v = edge1[j].v,w=edge1[j].w;
                    if(low[0][i]+low[1][v]+w==low[0][b]){
                        addEdge(i,v,1,tot);
                    }
                }
            }
            if(low[0][b]==INF){
                printf("0
    ");
                continue;
            }
            int max_flow = Dinic(a,b);
            printf("%d
    ",max_flow);
        }
        return 0;
    }
  • 相关阅读:
    [再寄小读者之数学篇](2014-06-14 自然数集到自身的两个不可交换的双射)
    [再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)
    [家里蹲大学数学杂志]第294期微分方程与数学物理问题习题集
    这几天回家了
    SCI,EI,ISTP
    [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
    [家里蹲大学数学杂志]第048期普林斯顿高等研究所的疯子们
    [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L
    [家里蹲大学数学杂志]第293期_偏微分方程基础教程
    [再寄小读者之数学篇](2014-06-03 华罗庚等式)
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5727033.html
Copyright © 2011-2022 走看看