zoukankan      html  css  js  c++  java
  • 非参中多样本的趋势秩检验的计算机实现

    一般来说,年龄越大的人的β脂蛋白的含量越大。现观察三组人,他们都是男性。第一组人的年龄在2030岁之间,第二组人的年龄在3040岁之间,第三组人的年龄在4050岁之间。他们的β脂蛋白的测量值如下表,问这三组人的测量值是否符合人们的经验:年龄越大的人的β脂蛋白的含量越大?

     1.首先在mathematica中算出一些必要的值,之后化为标准正态分布:

    a = {};
    Subscript[m, 1] = {260, 200, 240, 170, 270, 205, 190, 200, 250, 200};
    Subscript[m, 2] = {310, 310, 190, 225, 170, 210, 280, 210, 280, 240};
    Subscript[m, 3] = {320, 260, 360, 310, 270, 380, 240, 295, 260, 250};
    t = Sort[Join[Subscript[m, 1], Subscript[m, 2], Subscript[m, 3]]];
    Do[Subscript[b, i] = {}, {i, 1, 3}];
    Do[Do[AppendTo[Subscript[b, i], 
        Position[t, Subscript[m, i][[j]]]], {j, 1, 
        Length[Subscript[m, i]]}], {i, 1, 3}];
    Do[Subscript[t, i] = 
       Table[Apply[Plus, Subscript[b, i][[j]]]/
        Length[Subscript[b, i][[j]]], {j, 1, 
         Length[Subscript[m, i]]}], {i, 1, 3}];
    m = Split[t];
    a = {};
    For[i = 1, i <= Length[m], i++, 
      If[Length[m[[i]]] > 1, AppendTo[a, Length[m[[i]]]]
       ]];
    Print[a];
    Do[Subscript[n, i] = Length[Subscript[t, i]], {i, 1, 3}];
    Do[Subscript[R, i] = Apply[Plus, Subscript[t, i]][[1]], {i, 1, 3}];
    Do[Subscript[w, i] = 2 \!\(
    \*UnderoverscriptBox[\(\[Sum]\), \(t = 1\), \(i\)]
    \*SubscriptBox[\(n\), \(t\)]\) - Subscript[n, i], {i, 1, 3}];
    Do[Print[{Subscript[n, i], Subscript[R, i], Subscript[w, i]}], {i, 1, 
      3}]
    T = \!\(
    \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(3\)]\((
    \*SubscriptBox[\(w\), \(i\)]*
    \*SubscriptBox[\(R\), \(i\)])\)\)
    n = \!\(
    \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(3\)]
    \*SubscriptBox[\(n\), \(i\)]\);
    ET = n^2  (n + 1)/2
    Do[Subscript[k, i] = (a[[i]])^3 - a[[i]], {i, 1, Length[a]}];
    DT = N[(n*(n^2 - 1) - \!\(
    \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(Length[a]\)]
    \*SubscriptBox[\(k\), \(i\)]\))*(\!\(
    \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(3\)]\(
    \*SubscriptBox[\(n\), \(i\)]*
    \*SubscriptBox[\(w\), \(i\)]*
    \*SubscriptBox[\(w\), \(i\)]\)\) - n^3)/(12 (n - 1)), 9]
    y = -Abs[(T - (ET))/Sqrt[(DT)]]

    2.然后将算出的y值代入SAS程序中

    data;
        p=probnorm(-1.768463653);
        put p=;
    run;

    3.最后算出p值为0.038491711。

    有道无术,术尚可进;有术无道,止于术也!
  • 相关阅读:
    大数据概述
    递归下降语法分析
    消除左递归c语言文法
    自动转换机
    简单的C语言文法
    实验报告一 词法分析程序
    组合数据类型练习
    Python绘制五星红旗
    熟悉常用Linux操作
    大数据概述
  • 原文地址:https://www.cnblogs.com/liyongzhao/p/3278762.html
Copyright © 2011-2022 走看看