实验内容:
现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1。
buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“ ”分割,样本数据及格式如下:
- 买家id 商品id 收藏日期
- 10181 1000481 2010-04-04 16:54:31
- 20001 1001597 2010-04-07 15:07:52
- 20001 1001560 2010-04-07 15:08:27
- 20042 1001368 2010-04-08 08:20:30
- 20067 1002061 2010-04-08 16:45:33
- 20056 1003289 2010-04-12 10:50:55
- 20056 1003290 2010-04-12 11:57:35
- 20056 1003292 2010-04-12 12:05:29
- 20054 1002420 2010-04-14 15:24:12
- 20055 1001679 2010-04-14 19:46:04
- 20054 1010675 2010-04-14 15:23:53
- 20054 1002429 2010-04-14 17:52:45
- 20076 1002427 2010-04-14 19:35:39
- 20054 1003326 2010-04-20 12:54:44
- 20056 1002420 2010-04-15 11:24:49
- 20064 1002422 2010-04-15 11:35:54
- 20056 1003066 2010-04-15 11:43:01
- 20056 1003055 2010-04-15 11:43:06
- 20056 1010183 2010-04-15 11:45:24
- 20056 1002422 2010-04-15 11:45:49
- 20056 1003100 2010-04-15 11:45:54
- 20056 1003094 2010-04-15 11:45:57
- 20056 1003064 2010-04-15 11:46:04
- 20056 1010178 2010-04-15 16:15:20
- 20076 1003101 2010-04-15 16:37:27
- 20076 1003103 2010-04-15 16:37:05
- 20076 1003100 2010-04-15 16:37:18
- 20076 1003066 2010-04-15 16:37:31
- 20054 1003103 2010-04-15 16:40:14
- 20054 1003100 2010-04-15 16:40:16
要求编写MapReduce程序,统计每个买家收藏商品数量。
统计结果数据如下:
- 买家id 商品数量
- 10181 1
- 20001 2
- 20042 1
- 20054 6
- 20055 1
- 20056 12
- 20064 1
- 20067 1
- 20076 5
代码:
1 package mapreduce; 2 import java.io.IOException; 3 4 import java.util.StringTokenizer; 5 import org.apache.hadoop.fs.Path; 6 import org.apache.hadoop.io.IntWritable; 7 import org.apache.hadoop.io.Text; 8 import org.apache.hadoop.mapreduce.Job; 9 import org.apache.hadoop.mapreduce.Mapper; 10 import org.apache.hadoop.mapreduce.Reducer; 11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 13 14 public class WordCount { 15 public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{ 16 //第一个Object表示输入key的类型;第二个Text表示输入value的类型;第三个Text表示表示输出键的类型;第四个IntWritable表示输出值的类型 17 public static final IntWritable one = new IntWritable(1); 18 public static Text word = new Text(); 19 @Override 20 protected void map(Object key, Text value, Context context) throws IOException, InterruptedException //抛出异常 21 { 22 StringTokenizer tokenizer = new StringTokenizer(value.toString()," "); 23 //StringTokenizer是Java工具包中的一个类,用于将字符串进行拆分 24 word.set(tokenizer.nextToken()); 25 //返回当前位置到下一个分隔符之间的字符串 26 context.write(word, one); 27 //将word存到容器中,记一个数 28 } 29 } 30 public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ 31 //参数同Map一样,依次表示是输入键类型,输入值类型,输出键类型,输出值类型 32 private IntWritable result = new IntWritable(); 33 @Override 34 protected void reduce(Text key, Iterable<IntWritable> values, Context context) 35 throws IOException, InterruptedException { 36 int sum = 0; 37 for (IntWritable value : values) { 38 sum += value.get(); 39 } 40 //for循环遍历,将得到的values值累加 41 result.set(sum); 42 context.write(key, result); 43 } 44 } 45 public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { 46 Job job = Job.getInstance(); 47 job.setJobName("WordCount"); 48 job.setJarByClass(WordCount.class); 49 job.setMapperClass(doMapper.class); 50 job.setReducerClass(doReducer.class); 51 job.setOutputKeyClass(Text.class); 52 job.setOutputValueClass(IntWritable.class); 53 Path in = new Path("hdfs://localhost:9000/mymapreduce1/in"); 54 Path out = new Path("hdfs://localhost:9000/mymapreduce1/out"); 55 FileInputFormat.addInputPath(job, in); 56 FileOutputFormat.setOutputPath(job, out); 57 System.exit(job.waitForCompletion(true) ? 0 : 1); 58 } 59 }
最终结果截图: