zoukankan      html  css  js  c++  java
  • 遗传算法--句子匹配

    Source of original code

    Author: Morvan
    Visualize Genetic Algorithm to match the target phrase.
    Visit tutorial website for more: https://morvanzhou.github.io/tutorials/

    The result

    Absolutely, it's satisfying.
    With only 24 generations(Maybe a little more or less, randomly.), the sentence matches perfectly.

    Algorithm & Code interpretation

    the code component

    The whole code is consists of three parts.
    Some const variables , the class GA and the main function.

    some const variables

    TARGET_PHRASE = 'I love you!'       # target DNA
    POP_SIZE = 300                      # population size
    CROSS_RATE = 0.4                    # mating probability (DNA crossover)
    MUTATION_RATE = 0.01                # mutation probability
    N_GENERATIONS = 1000                # max generation
    DNA_SIZE = len(TARGET_PHRASE)       # the size of DNA
    
     # target ASCII indices of the target string, convert string to number
    TARGET_ASCII = np.fromstring(TARGET_PHRASE, dtype=np.uint8) 
    ASCII_BOUND = [32, 126]             # the bounds of the ASCII charactors
    

    main function

    Firstly, we constuct a GA object ,named ga with the const variables above.

    ga = GA(DNA_size=DNA_SIZE, DNA_bound=ASCII_BOUND, cross_rate=CROSS_RATE,
        mutation_rate=MUTATION_RATE, pop_size=POP_SIZE)
    

    Then, execute a for loop in the max generation

    for generation in range(N_GENERATIONS):
        fitness = ga.get_fitness()                      # get the fitness of the current population
        best_DNA = ga.pop[np.argmax(fitness)]           # best matching DNA
        best_phrase = ga.translateDNA(best_DNA)         # translate the DNA to string we can read
        print('Gen', generation, ': ', best_phrase)     # print the string
        if best_phrase == TARGET_PHRASE:                # as if the string matches perfectly, break the loop
            break
        ga.evolve()                                     # if not, evolve to the next generation
    

    GA class

    function init()

    def __init__(self, DNA_size, DNA_bound, cross_rate, mutation_rate, pop_size):
        self.DNA_size = DNA_size        # the size of DNA
        DNA_bound[1] += 1
        self.DNA_bound = DNA_bound      # ASCII Bound
        self.cross_rate = cross_rate
        self.mutate_rate = mutation_rate   
        self.pop_size = pop_size    # population
        # define the population of first generation
        self.pop = np.random.randint(*DNA_bound, size=(pop_size, DNA_size)).astype(np.int8)  # int8 for convert to ASCII
    

    To initialize the class with const variables above

    function translateDNA()

    def translateDNA(self, DNA):                 
        # convert to readable string
        return DNA.tostring().decode('ascii')
    

    Such as translate
    [126, 34, 45, 125, 46, 101, 32, 119, 38, 126, 33] to '~"-}.e w&~!'

    function get_fitness()

    def get_fitness(self):                      # count how many character matches
        match_count = (self.pop == TARGET_ASCII).sum(axis=1)
        return match_count
    

    To calculate the fitness of every DNA in current generation.
    List of array convert to list of int , int means match numbers

    function select()

    def select(self):
        fitness = self.get_fitness() + 1e-4     # add a small amount to avoid all zero fitness
        idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness/fitness.sum())
        return self.pop[idx]
    

    To select better fit DNA
    Every new array element depends on the probabilities of old array elements
    (probability = element.fitness/fitness.sum())
    The probability is higher, the more it will appear in the new array

    function crossover()

    def crossover(self, parent, pop):
        if np.random.rand() < self.cross_rate:
            i_ = np.random.randint(0, self.pop_size, size=1)                        # select another individual from pop
            cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool)   # choose crossover points
            parent[cross_points] = pop[i_, cross_points]                            # mating and produce one child
        return parent
    

    To cross this parent with another random parent in current generation

    function mutate()

    def mutate(self, child):
        for point in range(self.DNA_size):
            if np.random.rand() < self.mutate_rate:
                child[point] = np.random.randint(*self.DNA_bound)  # choose a random ASCII index
        return child
    

    Traverse all the elements in a DNA
    Randomly convert a element to a random ASCII charactor index

    function evolve()

    def evolve(self):
        pop = self.select()
        pop_copy = pop.copy()
        for parent in pop:  # for every parent
            child = self.crossover(parent, pop_copy)
            child = self.mutate(child)
            parent[:] = child
        self.pop = pop
    

    To evolve into the next generation.
    Firstly, select the better fitting ones
    Then, creat a copy of current generation
    Then, traverse everyone in current generation,
    cross it with another random one in current generation
    mutate randomly.
    Finally, upgrade to the next generation

    Complete code

    import numpy as np
    
    TARGET_PHRASE = 'I love you!'       # target DNA
    POP_SIZE = 300                                # population size
    CROSS_RATE = 0.4                          # mating probability (DNA crossover)
    MUTATION_RATE = 0.01                   # mutation probability
    N_GENERATIONS = 1000
    
    DNA_SIZE = len(TARGET_PHRASE)
    TARGET_ASCII = np.fromstring(TARGET_PHRASE, dtype=np.uint8)  # convert string to number
    ASCII_BOUND = [32, 126]
    
    
    class GA(object):
        def __init__(self, DNA_size, DNA_bound, cross_rate, mutation_rate, pop_size):
            self.DNA_size = DNA_size
            DNA_bound[1] += 1
            self.DNA_bound = DNA_bound
            self.cross_rate = cross_rate
            self.mutate_rate = mutation_rate
            self.pop_size = pop_size
    
            self.pop = np.random.randint(*DNA_bound, size=(pop_size, DNA_size)).astype(np.int8)  # int8 for convert to ASCII
    
        def translateDNA(self, DNA):                 # convert to readable string
            return DNA.tostring().decode('ascii')
    
        def get_fitness(self):                      # count how many character matches
            match_count = (self.pop == TARGET_ASCII).sum(axis=1)
            return match_count
    
        def select(self):
            fitness = self.get_fitness() + 1e-4     # add a small amount to avoid all zero fitness
            idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness/fitness.sum())
            return self.pop[idx]
    
        def crossover(self, parent, pop):
            if np.random.rand() < self.cross_rate:
                i_ = np.random.randint(0, self.pop_size, size=1)                        # select another individual from pop
                cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool)   # choose crossover points
                parent[cross_points] = pop[i_, cross_points]                            # mating and produce one child
            return parent
    
        def mutate(self, child):
            for point in range(self.DNA_size):
                if np.random.rand() < self.mutate_rate:
                    child[point] = np.random.randint(*self.DNA_bound)  # choose a random ASCII index
            return child
    
        def evolve(self):
            pop = self.select()
            pop_copy = pop.copy()
            for parent in pop:  # for every parent
                child = self.crossover(parent, pop_copy)
                child = self.mutate(child)
                parent[:] = child
            self.pop = pop
    
    if __name__ == '__main__':
        ga = GA(DNA_size=DNA_SIZE, DNA_bound=ASCII_BOUND, cross_rate=CROSS_RATE,
                mutation_rate=MUTATION_RATE, pop_size=POP_SIZE)
    
        for generation in range(N_GENERATIONS):
            fitness = ga.get_fitness()
            best_DNA = ga.pop[np.argmax(fitness)]
            best_phrase = ga.translateDNA(best_DNA)
            print('Gen', generation, ': ', best_phrase)
            if best_phrase == TARGET_PHRASE:
                break
            ga.evolve()
  • 相关阅读:
    大型电商业务架构 IT大咖说
    携程开源配置中心Apollo的设计与实现 IT大咖说
    李善友《认知升级之第一性原理》--507张PPT全解!_搜狐科技_搜狐网
    http://www.educity.cn/luntan/144478_5.html
    微服务架构下的分布式数据存储-技术之家
    http://blog.longjiazuo.com/archives/3080
    实施微服务架构的关键技术
    微服务架构的分布式事务解决方案
    k8s~helm镜像版本永远不要用latest
    nginx~对没有定义service_name的三级域名进行过滤
  • 原文地址:https://www.cnblogs.com/liyuquan/p/7617128.html
Copyright © 2011-2022 走看看