「Luogu4158」[SCOI2009]粉刷匠
题目描述
(windy)有 (N) 条木板需要被粉刷。 每条木板被分为 (M) 个格子。 每个格子要被刷成红色或蓝色。
(windy)每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。
如果(windy)只能粉刷 (T) 次,他最多能正确粉刷多少格子?
一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
输入输出格式
输入格式:
第一行包含三个整数,(N) (M) (T)。
接下来有(N)行,每行一个长度为(M)的字符串,'0'表示红色,'1'表示蓝色。
输出格式:
包含一个整数,最多能正确粉刷的格子数。
输入输出样例
输入样例#1:
3 6 3
111111
000000
001100
输出样例#1:
16
说明
(30\%)的数据,满足 (1 le N,M le 10) ; (0 le T le 100) 。
(100\%)的数据,满足 (1 le N,M <= 50) ; (0 le T le 2500) 。
Solution
蒟蒻看到这题想了(n)多种完全不正确的处理方法,如果是在考场上估计已经光速凉凉了(QAQ)
对于每一行,我们可以把它分成若干个颜色不同的连续段(对应若干次颜色不同的粉刷),从左到右考虑
注意到题目:
一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
意思就是不刷白不刷
如果是颜色不对,多刷这一格不会比不刷差,就不需要考虑不刷的情况
所以我们有:
状态:设(dp_{i,j,k,0/1})表示当前枚举到第(i)行,第(j)个格子,已经涂了(k)次(分成了(k)段),当前格子涂的颜色是(0/1)
方程:
(方括号是艾弗森括号,当其中的条件为真时值为(1),否则为(0))
这个转移应该很好理解吧
处理完每一行之后,(max(dp_{i,m,k,0},dp_{i,m,k,1}))即为第(i)行分配(k)次粉刷次数所能正确粉刷的最大格子数
这样,每一行作为一组,原问题就转化为一个分组背包问题,在此不再赘述
Code
代码中所用的字母与上述转移方程略有不同,请注意辨别
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#define maxn 55
#define maxm 55
#define maxt 2505
using namespace std;
typedef long long ll;
template <typename T> void read(T &t)
{
t=0;int f=0;char c=getchar();
while(!isdigit(c)){f|=c=='-';c=getchar();}
while(isdigit(c)){t=t*10+c-'0';c=getchar();}
if(f)t=-t;
}
int n,m,t;
int col[maxn][maxm];
int dp[maxn][maxm][maxm][2],tdp[maxt];
int main()
{
read(n),read(m),read(t);
for(register int i=1;i<=n;++i)
{
char c[maxm];
scanf("%s",c+1);
for(register int j=1;j<=m;++j)
col[i][j]=c[j]-'0';
}
for(register int li=1;li<=n;++li)
for(register int i=1;i<=m;++i)
for(register int k=1;k<=min(t,m);++k)
for(register int x=0;x<=1;++x)
dp[li][i][k][x]=max(dp[li][i-1][k][x],dp[li][i-1][k-1][x^1])+(x==col[li][i]);
for(register int i=1;i<=n;++i)
for(register int j=t;j>=0;--j)
for(register int k=1;k<=min(j,m);++k)
tdp[j]=max(tdp[j],tdp[j-k]+max(dp[i][m][k][0],dp[i][m][k][1]));
printf("%d",tdp[t]);
return 0;
}