zoukankan      html  css  js  c++  java
  • 堆排序(概念、原理、实现)

       完全二叉树的定义、性质以及算法见正文,这里补充一点:完全二叉树是效率很高的数据结构,堆是一种完全二叉树或者近似完全二叉树,所以效率极高,像十分常用的排序算法、Dijkstra算法、Prim算法等都要用堆才能优化,几乎每次都要考到的二叉排序树的效率也要借助平衡性来提高,而平衡性基于完全二叉树。

    1 判断完全二叉树

    完全二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点

    2 完全二叉树定义

    完全二叉树(Complete Binary Tree)

    若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

    完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。

    一棵二叉树至多只有最下面的两层上的结点的度数可以小于2,并且最下层上的结点都集中在该层最左边的若干位置上,则此二叉树成为完全二叉树。

    3 完全二叉树特点

    叶子结点只可能在最大的两层上出现,对任意结点,若其右分支下的子孙最大层次为L,则其左分支下的子孙的最大层次必为L 或 L+1;

    出于简便起见,完全二叉树通常采用数组而不是链表存储,其存储结构如下:

    tree[n]: int {tree[0], tree[1]...tree[n-1]}

    对于tree[i]有如下特点:

    (1)若i为奇数且i>1,那么tree的左兄弟为tree[i-1];

    (2)若i为偶数且i<n,那么tree的右兄弟为tree[i+1];

    (3)若i>1,tree的双亲为tree[i div 2];

    (4)若2*i<=n,那么tree的左孩子为tree[2*i];若2*i+1<=n,那么tree的右孩子为tree[2*i+1];

    (5)若i>n div 2,那么tree[i]为叶子结点(对应于(3));

    (6)若i<(n-1) div 2.那么tree[i]必有两个孩子(对应于(4))。

    (7)满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树。

    完全二叉树第i层至多有2^(i-1)个节点,共i层的完全二叉树最多有2^i-1个节点。

    4 算法

    如果一棵具有n个结点的深度为k的二叉树,它的每一个结点都与深度为k的满二叉树中编号为1~n的结点一一对应,这棵二叉树称为完全二叉树。

    可以根据公式进行推导,假设n0是度为0的结点总数(即叶子结点数),n1是度为1的结点总数,n2是度为2的结点总数,由二叉树的性质可知:n0=n2+1,则n= n0+n1+n2(其中n为完全二叉树的结点总数),由上述公式把n2消去得:n= 2n0+n1-1,由于完全二叉树中度为1的结点数只有两种可能0或1,由此得到n0=(n+1)/2或n0=n/2。

    总结起来,就是 n0=[n/2],其中[]表示上取整。可根据完全二叉树的结点总数计算出叶子结点数。

    5 小根堆

    小根堆一般指最小堆

    堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于(或不小于)其左孩子和右孩子节点的值。(注意,这里对同兄弟结点没有要求)

    最大堆和最小堆是二叉堆的两种形式。

    最大堆:根结点的键值是所有堆结点键值中最大者。

    最小堆:根结点的键值是所有堆结点键值中最小者。

    而最大-最小堆集结了最大堆和最小堆的优点,这也是其名字的由来。

    最大-最小堆是最大层和最小层交替出现的二叉树,即最大层结点的儿子属于最小层,最小层结点的儿子属于最大层。

    以最大(小)层结点为根结点的子树保有最大(小)堆性质:根结点的键值为该子树结点键值中最大(小)项。

     

    6 原理过程

    如何建立这个堆呢。可以从空的堆开始,然后依次往堆中插入每一个元素,直到所有数都被插入(转移到堆中为止)。因为插入第i个元素的所用的时间是O(log i),所以插入所有元素的整体时间复杂度是O(NlogN),代码如下:

    1 n=0;
    2 for(i=1;i<=m;i++)
    3 {
    4     n++;
    5     h[n] = a[i];  
    6     siftup();
    7 }

     

    其实我们还有更快得方法来建立堆。它是这样的。

            直接把整数放入一个完全二叉树中(这里我们还是用一个一维数组来存储完全二叉树),然后通过直接的堆调整来完成排序,如下图(注:这里的图片来自哈工大李建中《算法设计与分析》课件)

    现在要完成6个整数{6,5, 14,7, 8, 1}的大根堆排序;

    这里左侧是建立完全二叉树,然后调整为大根堆结构; 开始的位置是第一个非叶节点及其子节点;

    上图是要排序时,将大根堆的根节点(这里是14)从二叉树中去掉,然后用最后一个叶子节点(这里是1)填充,变成了上图左侧的结构, 然后再调整为大根堆,就是上图右侧二叉树;

    下面几幅图操作相同.

      

    通过这个例子不难看出,主要思想是将大根堆的堆顶取出,放到数组的最后一个位置,将最后一个位置原来的数放到堆顶,然后对堆顶做调整;

     

    7 代码实现

      1 #include <stdio.h>  
      2 #include <stdlib.h>  
      3 #include <stdint.h>  
      4 #include <assert.h>  
      5 #include <string.h>   
      6   
      7 void Swap(int * array, int  i, int  j)  
      8 {  
      9     assert(array);  
     10     int  tmp;  
     11     tmp = array[j];  
     12     array[j] = array[i];  
     13     array[i] = tmp;  
     14 }  
     15 
     16 /*小根堆调整*/  
     17 void MinHeapify(int * array, int  heapSize, int  currentNode)  
     18 {  
     19     int  leftChild, rightChild,  minimum;  //左、右孩子下标;三者最小元素下标
     20     leftChild = 2*currentNode + 1;  //当前结点的做左孩子
     21     rightChild = 2*currentNode + 2; //当前结点的做右孩子 
     22     if(leftChild < heapSize && array[leftChild] < array[currentNode])  
     23         minimum = leftChild;  //有左孩子并且左孩子较小
     24     else  
     25         minimum = currentNode;  
     26     if(rightChild < heapSize && array[rightChild] < array[minimum])  
     27         minimum = rightChild; //有右孩子并且右孩子是三者最小的 
     28     if(minimum != currentNode)  
     29     {//    当前结点不是最小的,需要交换
     30         Swap(array, minimum, currentNode);  
     31         MinHeapify(array, heapSize, minimum);  //子节点需要重新递归调整
     32     }  
     33 }  
     34 /*构建小根堆*/  
     35 void MinHeapCreate(int * array, int  heapSize)  
     36 {  
     37     int i;  
     38     for(i = heapSize/2; i >= 0; i--)  
     39     { //需要从最后一个非叶节点开始调整
     40         MinHeapify(array, heapSize, i);  
     41     }  
     42 }  
     43 
     44 /*大根堆调整*/  
     45 void MaxHeapify(int * array, int  heapSize, int  currentNode)  
     46 {  
     47     int  leftChild, rightChild,  largest;  
     48     leftChild = 2*currentNode + 1;  
     49     rightChild = 2*currentNode + 2;  
     50     if(leftChild < heapSize && array[leftChild] > array[currentNode])  
     51         largest = leftChild;  
     52     else  
     53         largest = currentNode;  
     54     if(rightChild < heapSize && array[rightChild] > array[largest])  
     55         largest = rightChild;  
     56     if(largest != currentNode)  
     57     {  
     58         Swap(array, largest, currentNode);  
     59         MaxHeapify(array, heapSize, largest);  
     60     }  
     61 }  
     62   
     63 /*构建大根堆*/  
     64 void MaxHeapCreate(int * array, int  heapSize)  
     65 {  /*注意:这里只是经过一次堆调整之后,并不是将这些数完全用堆排序完成排序*/
     66 
     67     int i;  
     68     for(i = heapSize/2; i >= 0; i--)  
     69     {  
     70         MaxHeapify(array, heapSize, i);  
     71     }  
     72 }  
     73   
     74 int main()  
     75 {  
     76     int  tmp;  
     77     int  array[] = {6, 1, 14, 7, 5, 8}; //源数据
     78     int *res = array;    /*用于输出*/
     79     
     80     int i, heapSize = sizeof(array)/sizeof(int );  
     81    
     82     printf("Source data:
    ");  
     83     for(i = 0; i < heapSize; i++)  
     84     {  
     85         printf("%d	", array[i]);  
     86     }  
     87     printf("
    ");  
     88     
     89     /*构建一次小根堆并输出, 每次找出最小结点*/ 
     90     for(i = heapSize; i > 1; --i)
     91     {
     92         MinHeapCreate(array, i); /*一次堆调整*/
     93         Swap(array, 0, i - 1);    /*将最小值依次存储在数组后端*/
     94     }
     95     
     96     printf("Output the MinHeap:
    ");  
     97     for(i = 0; i < heapSize; i++)  
     98     {  
     99         printf("%d	", array[i]);  
    100     }  
    101     printf("
    ");  
    102     
    103     /*构建大根堆并输出, 每次堆调整找出最大结点*/  
    104     for(i = heapSize; i > 1; --i)
    105     {
    106         MaxHeapCreate(array, i); /*一次堆调整*/
    107         Swap(array, 0, i - 1);    /*将最大值依次存储在数组后端*/
    108     }
    109 
    110     printf("Output the MaxHeap:
    ");  
    111     for(i = 0; i < heapSize; i++)  
    112     {  
    113         printf("%d	", array[i]);  
    114     }    
    115     return 0;  
    116 }
    117   

    结果:使用堆排序完全排序一个数组

            

  • 相关阅读:
    嵌入式C语言编程小技巧
    冒号:在linux bash中的各种用法
    巧用ls命令
    嵌入式C精华提炼1
    不知道这些,别说你是嵌入式工程师!
    这些ARM基础知识你还不知道吗
    代码示例_C_冒泡
    代码示例_文件IO_lseek
    代码示例_文件IO_read / write
    代码示例_标准IO_fseek
  • 原文地址:https://www.cnblogs.com/lizhanwu/p/4418035.html
Copyright © 2011-2022 走看看