np.ceil(x)
对x中所有元素向上取整,
Causion:输出元素都为‘float64’
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])
np.floor(x)
对x中所有元素向下取整,
Causion:输出元素都为‘float64’
np.random.permutation(x)
随机掉换序列x中各元素的顺序,
x为integer时,返回打乱的range(x)的序列;
x为1-array时,返回elemet被打乱的array;
x为n-array时,返回axis=0被打乱的array;
>>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], [0, 1, 2], [3, 4, 5]])
np.squeeze(x)
删除x中的单维条目
如果写成x.squeeze(n),则为删除x数组中的第n维,前提是第n维大小为1
>>> x = np.random.randn(1,3,4,1,3,1) >>> print(x.shape)
(1, 3, 4, 1, 3, 1)
>>> y = np.squeeze(x) # 从数组的形状中删除单维条目,即把shape中为1的维度去掉
>>> print(y.shape)
(3, 4, 3)
>>> x1 = x.squeeze(0)
>>> print(x1.shape)
(3, 4, 1, 3, 1)
>>> x2 = x.squeeze(1)
>>> print(x1.shape)
ValueError: cannot select an axis to squeeze out which has size not equal to one