前缀数组其实就是有序的,那么答案显然是
我们尝试求出通项公式:
证明如下:
因为
所以:
解之得:
更加通俗的写法如下:
易知
令
那么,
(错位相减)
由易知等式代入得,
所以,
所以程序如下:
# include <bits/stdc++.h> using namespace std; char s[1000005] ; int main() { freopen("absurdity.in","r",stdin); freopen("absurdity.out","w",stdout); int pig; scanf("%d ",&pig); scanf("%s",s); int n=strlen(s); long long ans=(long long) n*(n+1)*(2*n+1)/6ll; printf("%lld ",ans%(1000000007)); return 0; }
这道题是有点failure的感觉,就是考场上想了个 的算法(而且还是错的?!)
我还是讲讲吧,枚举起始位置i往后找m个数字,每次找最优就是后面的l减去前面的L,后面的r被前面的R减去 算出负贡献最小
程序贴下,并不是正确解法(code 39pts)
# include <bits/stdc++.h> using namespace std; const int MAXN=1000006; struct rec{ int l,r,id; }a[MAXN]; int n,m,p[MAXN],t[MAXN],ans=0; bool vis[MAXN]; bool cmp(rec a,rec b) { if (a.l!=b.l) return a.l<b.l; else return a.r<b.r; } inline int read() { int x=0,t=1;char ch=getchar(); if (ch=='-') { t=-1; ch=getchar(); } while(ch>'9'||ch<'0') ch=getchar(); while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^'0');ch=getchar(); } return x*t; } int main() { freopen("failure.in","r",stdin); freopen("failure.out","w",stdout); int num; scanf("%d",&num); scanf("%d%d",&n,&m); for (int i=1;i<=n;i++) //scanf("%d%d",&a[i].l,&a[i].r) a[i].l=read(),a[i].r=read(),a[i].id=i; sort(a+1,a+1+n,cmp); ans=0; memset(p,0,sizeof(p)); for (int i=1;i<=n-m+1;i++) { int L=a[i].l,R=a[i].r; t[0]=1;t[1]=a[i].id; memset(vis,false,sizeof(vis)); vis[a[i].id]=true; for (int tt=2;tt<=m;tt++) { int mm=INT_MAX,k=0; for (int j=i+1;j<=n;j++) { if (vis[a[j].id]) continue; int tot=0; if (a[j].l>L) tot+=a[j].l-L; if (a[j].r<R) tot+=R-a[j].r; if (tot<mm) mm=tot,k=j; } vis[a[k].id]=true; t[++t[0]]=a[k].id; L=max(L,a[k].l); R=min(R,a[k].r); } if (R-L>ans) { ans=R-L; memcpy(p+1,t+1,sizeof(t)-4); } } printf("%d ",ans); for (int i=1;i<=m;i++) printf("%d ",p[i]); printf(" "); return 0; }
讲讲这道题的正解就是用堆来优化算法
我们知道如果我们枚举的区间是[l1,r2][l2,r2]......[lm,rm]那么显然
=∅ 或者
那么我们维护一个有m元素的堆描述我们的答案区间,堆顶元素是指min(ri)
先按照l排序从1扫到n保证li有序那么如果加入一个ri超过m个元素那么堆顶元素弹出,只要堆里的元素个数恰好为m而且可以更新答案那么就更新答案,随后输出是只要枚举不在了左端点l,右端点r不在[l,r]就是被选中,
包含关系,这里画个图
正解:
# include <bits/stdc++.h> using namespace std; const int MAXN=1000006; struct qwq{ int l,r; }; struct rec{ qwq val; int id; }a[MAXN]; bool cmp(rec a,rec b) { if (a.val.l!=b.val.l) return a.val.l<b.val.l; else return a.val.r<b.val.r; } struct cmp1{ bool operator() (int a,int b) { return a>b; } }; priority_queue<int,vector<int>,cmp1>heap; int ans,n,k; int main() { int num; scanf("%d",&num); scanf("%d%d",&n,&k); for (int i=1;i<=n;i++) scanf("%d%d",&a[i].val.l,&a[i].val.r),a[i].id=i; sort(a+1,a+1+n,cmp); int l,r; for (int i=1;i<=n;i++) { heap.push(a[i].val.r); if (heap.size()>k) heap.pop(); if (heap.size()==k&&heap.top()-a[i].val.l>ans){ ans=heap.top()-a[i].val.l; l=a[i].val.l;r=heap.top(); } } printf("%d ",ans); if (ans==0) for (int i=1;i<=k;i++) printf("%d ",i); else { for (int i=1;i<=n;i++) if (a[i].val.l<=l&&a[i].val.r>=r) { printf("%d ",a[i].id); k--; if (k==0) return 0; } } return 0; }
这个题只有std,贴一个
#include<bits/stdc++.h> using namespace std; const int MAXS = 1 << 20; const int P = 1e9 + 7; template <typename T> void chkmax(T &x, T y) {x = max(x, y); } template <typename T> void chkmin(T &x, T y) {x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } int n, m, k, cnt[MAXS], bits[MAXS]; int power(int x, int y) { if (y == 0) return 1; int tmp = power(x, y / 2); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } int main() { freopen("loneliness.in", "r", stdin); freopen("loneliness.out", "w", stdout); int num; read(num); read(n), read(m), read(k); for (int i = 1; i <= m; i++) { int x; read(x); cnt[x]++; } int ans = power(m, k), goal = (1 << n) - 1; for (int len = 2; len <= (1 << n); len <<= 1) { for (int i = 0; i <= goal; i += len) for (int j = i, k = i + len / 2; k < i + len; j++, k++) cnt[j] += cnt[k]; } for (int i = 1; i <= goal; i++) bits[i] = bits[i - (i & -i)] + 1; for (int i = 0; i <= goal; i++) { if (bits[i] & 1) ans = (ans + power(cnt[i], k)) % P; else ans = (ans - power(cnt[i], k) + P) % P; } writeln(ans); return 0; }