zoukankan      html  css  js  c++  java
  • codeforces 715B:Complete The Graph

    Description

    ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

    The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

    Input

    The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

    Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi (0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

    It is guaranteed that there is at most one edge between any pair of vertices.

    Output

    Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

    Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers ui, vi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

    The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

    If there are multiple solutions, print any of them.

    Examples
    Input
    5 5 13 0 4
    0 1 5
    2 1 2
    3 2 3
    1 4 0
    4 3 4
    Output
    YES
    0 1 5
    2 1 2
    3 2 3
    1 4 8
    4 3 4
    Input
    2 1 123456789 0 1
    0 1 0
    Output
    YES
    0 1 123456789
    Input
    2 1 999999999 1 0
    0 1 1000000000
    Output
    NO
    Note

    Here's how the graph in the first sample case looks like :

    In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

    In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

    In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

     

     

    正解:dijkstra

    解题报告:

      其实这道题也很简单,考场上没想出来真是我傻...

      首先那些可以修改的边最小边权为1,则全部改为1,那么如果此时最短路小于等于L,那么至少是有解的。否则无解。

      然后依次修改当前还差的边权,直到合法,反正CF机子快,丝毫不虚。

      然而我WA了一个晚上,因为我的inf设大了,一加就炸,调了很久才发现...

     

     1 //It is made by jump~
     2 #include <iostream>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <cstdio>
     6 #include <cmath>
     7 #include <algorithm>
     8 #include <ctime>
     9 #include <vector>
    10 #include <queue>
    11 #include <map>
    12 #include <set>
    13 using namespace std;
    14 typedef long long LL;
    15 const int MAXN = 1011;
    16 const int MAXM = 20011;
    17 const int MOD = 2000000;
    18 int n,m,L,s,t,ecnt;
    19 int first[MAXN],to[MAXM],next[MAXM],w[MAXM],dis[MAXN];
    20 int tag[MAXM];//!!!!!
    21 int dui[MAXN*10],head,tail;
    22 bool in[MAXN],ok;
    23 
    24 inline int getint()
    25 {
    26        int w=0,q=0; char c=getchar();
    27        while((c<'0' || c>'9') && c!='-') c=getchar(); if(c=='-') q=1,c=getchar(); 
    28        while (c>='0' && c<='9') w=w*10+c-'0', c=getchar(); return q ? -w : w;
    29 }
    30 
    31 inline void SPFA(){
    32     //memset(dis,63,sizeof(dis));
    33     for(int i=1;i<=n;i++) dis[i]=1000000001;//不能设太大!!!不然会炸,WA了好久!!!
    34     dis[s]=0;   head=tail=0;   dui[++tail]=s; memset(in,0,sizeof(in)); in[s]=1;
    35     while(head!=tail) {
    36     head%=n; head++; int u=dui[head]; in[u]=0;
    37     for(int i=first[u];i>0;i=next[i]) {
    38         int v=to[i];
    39         if(dis[v]>dis[u]+w[i]) {
    40         dis[v]=dis[u]+w[i];
    41         if(!in[v]) { tail%=n; tail++; dui[tail]=v; in[v]=1; }
    42         }
    43     }
    44     }
    45 }
    46 
    47 inline void work(){
    48     //memset(first,-1,sizeof(first));
    49     n=getint(); m=getint(); L=getint(); s=getint()+1; t=getint()+1;
    50     int x,y,z;ecnt=1;
    51     for(int i=1;i<=m;i++) {
    52     x=getint()+1; y=getint()+1; z=getint();
    53     next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z; if(z==0) tag[ecnt]=1,w[ecnt]=1;
    54     next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z; if(z==0) tag[ecnt]=1,w[ecnt]=1;
    55     }
    56     SPFA();   if(dis[t]>L) { printf("NO"); return ; }
    57     ok=false;
    58     for(int i=1;i<=n;i++) {
    59     for(int j=first[i];j>0;j=next[j]) {
    60         if(j & 1)
    61         if(tag[j]) {
    62             if(dis[t]==L){ ok=true ; break;}
    63             if(dis[t]<L) {
    64             w[j]=w[j^1]=L-dis[t]+1;
    65             SPFA();        
    66             }
    67         }
    68     }
    69     if(ok) break;
    70     }
    71     if(!ok && dis[t]!=L) { printf("NO"); }
    72     else{
    73     printf("YES
    ");
    74     for(int i=1;i<=n;i++)  
    75         for(int j=first[i];j>0;j=next[j]) 
    76         if(j&1)
    77             printf("%d %d %d
    ",to[j]-1,to[j^1]-1,w[j]);
    78     }
    79 }
    80 
    81 int main()
    82 {
    83   work();
    84   return 0;
    85 }
  • 相关阅读:
    SQL语法:查询此表有另外一个表没有的数据
    .NET平台开源项目速览-最快的对象映射组件Tiny Mapper之项目实践
    win7 64 安装Oracle 11G 、使用PLSQL进行连接 标准实践
    json 筛选数据 $.grep过滤数据
    bootstrap table 行号 显示行号 添加行号 bootstrap-table 行号
    ajax 请求二进制流 图片 文件 XMLHttpRequest 请求并处理二进制流数据 之最佳实践
    JS中判断JSON数据是否存在某字段的方法 JavaScript中判断json中是否有某个字段
    json 数字key json 数字作为主键
    ajax 跨域 headers JavaScript ajax 跨域请求 +设置headers 实践
    扩展:gridview 空数据时显示表头
  • 原文地址:https://www.cnblogs.com/ljh2000-jump/p/5898218.html
Copyright © 2011-2022 走看看