zoukankan      html  css  js  c++  java
  • POJ3264 Balanced Lineup

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

    本文作者:ljh2000
    作者博客:http://www.cnblogs.com/ljh2000-jump/
    转载请注明出处,侵权必究,保留最终解释权!

     

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0


    正解:ST表维护RMQ查询

     解题报告:

       RMQ裸题,ST表维护即可。

    //It is made by ljh2000
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    typedef long long LL;
    const int MAXN = 50011;
    int n,m,a[MAXN],f[MAXN][17],g[MAXN][17],belong[MAXN];
    inline int getint(){
        int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
        if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
    }
    
    inline int querymax(int l,int r){
    	int t=belong[r-l+1];
    	return max(g[l][t],g[r-(1<<t)+1][t]);
    }
    
    inline int querymin(int l,int r){
    	int t=belong[r-l+1];
    	return min(f[l][t],f[r-(1<<t)+1][t]);
    }
    
    inline void work(){
    	n=getint(); m=getint(); for(int i=1;i<=n;i++) a[i]=getint(),f[i][0]=a[i],g[i][0]=a[i];
    	belong[1]=0; for(int i=2;i<=n;i++) belong[i]=belong[i>>1]+1;
    
    	for(int j=1;j<=16;j++) 
    		for(int i=1;i<=n;i++) {
    			f[i][j]=f[i][j-1];
    			if(i+(1<<(j-1))<=n) f[i][j]=min(f[i][j],f[i+(1<<(j-1))][j-1]);
    		}
    
    	for(int j=1;j<=16;j++) 
    		for(int i=1;i<=n;i++) {
    			g[i][j]=g[i][j-1];
    			if(i+(1<<(j-1))<=n) g[i][j]=max(g[i][j],g[i+(1<<(j-1))][j-1]);
    		}
    
    	int l,r;
    	while(m--) {
    		l=getint(); r=getint();
    		printf("%d
    ",querymax(l,r)-querymin(l,r));		
    	}
    }
    
    int main()
    {
        work();
        return 0;
    }
    

      

  • 相关阅读:
    机器人学 —— 轨迹规划(Artificial Potential)
    机器人学 —— 轨迹规划(Sampling Method)
    机器人学 —— 轨迹规划(Configuration Space)
    机器人学 —— 机器人感知(Kalman Filter)
    机器人学 —— 机器人感知(Gaussian Model)
    机器学习 —— 概率图模型(Homework: Structure Learning)
    机器人学 —— 机器人视觉(Bundle Adjustment)
    机器人学 —— 机器人视觉(极几何)
    机器学习 —— 概率图模型(Homework: CRF Learning)
    机器人学 —— 机器人视觉(估计)
  • 原文地址:https://www.cnblogs.com/ljh2000-jump/p/6279193.html
Copyright © 2011-2022 走看看