zoukankan      html  css  js  c++  java
  • BZOJ3243/UOJ121 [Noi2013]向量内积

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

    本文作者:ljh2000
    作者博客:http://www.cnblogs.com/ljh2000-jump/
    转载请注明出处,侵权必究,保留最终解释权!

    Description

    两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即:

    现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数。请帮助她解决这个问题

    Input

    第一行包含3个正整数n,d,k,分别表示向量的个数,维数以及待检测的倍数。接下来n行每行有d个非负整数,其中
    第i行的第j个整数表示向量xi的第j维权值xi,j。
    N<=100000,D<=30,K<=3,Xi,j<10

    Output

    包含两个整数,用空格隔开。如果存在两个向量xp,xq的内积为k的整数倍,则输出两个向量的编号p与q(要求p<q
    )。如果存在多组这样的向量组合,输出其中任意一组即可。若不存在这样的向量组合,则输出两个-1。

    Sample Input

    2 20 2
    0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1
    1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0

    Sample Output

    1 2
     

     

    正解:随机化+矩阵乘法+搜索

    解题报告:

      这道题非常有意思呀…

      首先如果把所有向量列在一起可以得到一个n*d的矩阵,而将这个矩阵转置得到一个转置矩阵,用矩阵乘转置矩阵,将得到的新矩阵。

      容易发现,新矩阵的第i行第j个数就是第i个向量和第j个向量的内积。

      如果在模2意义下,只要新矩阵中存在0,则说明存在是2的倍数的组合。

      而我们可以和全1矩阵进行比较。如果不相等则说明存在,暴力寻找;否则不存在。

      注意到为了支持快速判断两个大矩阵是否相等,我需要用一个另外的矩阵分别乘等式两边的矩阵,如果最终结果相同则视为两个矩阵相等。

      这样做有可能出错,多随几次提高判断正确的概率。

     

      对于k=3的情况,不能用上述做法做,考虑把结果平方一下,则可以把2化成1。考虑不用矩乘,直接用点积:

      考虑我先随机一个1到n的排列,每次用当前排列所代表的向量,去与之前的所有向量做点积。得到的答案平方之后,再加起来。

      那么我可以得到一个权值,如果为i-1则说明全为1,与全1矩阵相等。否则出现了0,暴力寻找,输出答案即可。

      考虑如何优化快速求与之前所有向量的点积的平方和。

      ${(sum_{i=1}^{d}a_i*b_i)^2}$这是a向量和b向量的点积的平方。

      ${(sum_{i=1}^{d}a_i*b_i)^2}=sum_{i=1}^{d}sum_{j=1}^{d}a_i*b_i*a_j*b_j$

      那么我令a为排列的第i个数所代表的向量,则令b为排列的前i-1个数的前缀和,则可快速求得。

     

    //It is made by ljh2000
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #include <ctime>
    using namespace std;
    typedef long long LL;
    const int MAXN = 100011;
    const int MAXD = 102;
    int n,d,k,c[MAXN],ans[MAXN],c2[MAXN],q[MAXN];
    int a[MAXN][MAXD],b[MAXD][MAXN],tot,sum[MAXD][MAXD];//转置矩阵不要写反了!
    
    inline int getint(){
        int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
        if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
    }
    
    inline int calc(int x){
    	int tot=0;
    	for(int i=1;i<=d;i++)
    		for(int j=1;j<=d;j++)
    			tot+=sum[i][j]*a[x][i]*a[x][j],sum[i][j]+=a[x][i]*a[x][j];
    	return tot%3;
    }
    
    inline void work(){
    	srand(20000605);
    	n=getint(); d=getint(); k=getint();
    	for(int i=1;i<=n;i++) for(int j=1;j<=d;j++) a[i][j]=getint(),a[i][j]%=k;
    	for(int j=1;j<=d;j++) for(int i=1;i<=n;i++) b[j][i]=a[i][j];
    	if(k==2) {
    		int Case=0;
    		while(Case<=5) {//随机几次
    			Case++; if(Case>5) break; tot=0;
    			for(int i=1;i<=n;i++) c[i]=rand()%k,tot+=c[i]; tot%=k; for(int i=1;i<=n;i++) ans[i]=0;
    			for(int i=1;i<=d;i++) { for(int j=1;j<=n;j++) ans[i]+=c[j]*a[j][i]; ans[i]%=k; }
    			for(int i=1;i<=n;i++) c2[i]=0;
    			for(int i=1;i<=n;i++){ for(int j=1;j<=d;j++) c2[i]+=ans[j]*b[j][i];	c2[i]%=k; }
    			int tag=-1;	for(int i=1;i<=n;i++) if(c2[i]!=tot) { tag=i; break; }//不同的位置
    			if(tag==-1) continue; int tag2=-1,now;
    			for(int i=1;i<=n;i++)  {
    				if(i==tag) continue;
    				now=0; for(int j=1;j<=d;j++) now+=a[tag][j]*b[j][i];
    				now%=k;	if(now==0) { tag2=i; break; }
    			}
    			if(tag2!=-1) { if(tag>tag2) swap(tag,tag2); printf("%d %d
    ",tag,tag2); return ; }
    		}
    		printf("-1 -1");
    	}
    	else{
    		for(int i=1;i<=n;i++) q[i]=i;
    		random_shuffle(q+1,q+n+1); 
    		int Case=1;
    		while(Case--) {
    			memset(sum,0,sizeof(sum));
    			for(int i=1;i<=n;i++) {
    				if(calc(q[i])!=((i-1)%3)) {
    					for(int j=1;j<i;j++) { 
    						int tot=0;
    						for(int l=1;l<=d;l++) tot+=a[q[i]][l]*a[q[j]][l];
    						if(tot%3==0) { printf("%d %d",min(q[i],q[j]),max(q[i],q[j])); return ; }
    					}
    				}
    			}
    		}
    		printf("-1 -1");
    	}
    }
    
    int main()
    {
        work();
        return 0;
    }
    

      

  • 相关阅读:
    源码
    Leetcode 230. 二叉搜索树中第K小的元素 中序遍历
    Leetcode 160. 相交链表 哈希 链表
    Leetcode 142. 环形链表 II
    Leetcode 217. 存在重复元素 哈希 排序
    asp.mvc2.0资料
    关于CRM的介绍
    WPf控件模板缺省样式
    皮肤制作工具
    关于linq的用法
  • 原文地址:https://www.cnblogs.com/ljh2000-jump/p/6388599.html
Copyright © 2011-2022 走看看