zoukankan      html  css  js  c++  java
  • ConcurrentHashMap(1.7版本和1.8版本)

     为什么要使用ConcurrentHashMap?
      ConcurrentHashMap是Java5中新增加的一个线程安全的Map集合,可以用来替代hashMap和HashTable。因为在并发编程中使用HashMap可能导致程序死循环,而使用线程安全的HashTable效率又非常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。
    (1)线程不安全的HashMap:在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。而HashMap在并发执行put操作时之所以会引起死循环,是因为多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。(1.7版本)
    (2)效率低下的HashTable:HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。
    (3)ConcurrentHashMap的锁分段技术可有效提升并发访问率:HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术:首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
    1.7版本.ConcurrentHashMap
    1.1ConcurrentHashMap的底层结构
      ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组。Segment的结构和HashMap类似,是一种数组和链表结构。一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁。
     

      hashMap在1.7版本时使用的是哈希表(数组+链表),Java中采用链表的方式来解决hash冲突的。一个segment元素相当于一个hashMap,一个HashMap的数据结构看起来类似下图:

         1

      实现了同步的HashTable也是这样的结构,它的同步是使用锁来保证的,并且所有同步操作使用的是同一个锁对象。这样若有n个线程同时在get时,这n个线程要串行的等待来获取锁。

      ConcurrentHashMap中对这个数据结构,针对并发稍微做了一点调整。它把区间按照并发级别(concurrentLevel),分成了若干个segment。默认情况下内部按并发级别16来创建。对于每个segment的容量,默认情况也是16。当然并发级别(concurrentLevel)和每个段(segment)的初始容量都是可以通过构造函数设定的。

      创建好默认的ConcurrentHashMap之后,它的结构大致如下图:

     1

    1.2ConcurrentHashMap的初始化

      ConcurrentHashMap初始化方法是通过initialCapacity、loadFactor和concurrencyLevel等几个参数来初始化segment数组、段偏移量segmentShift、段掩码segmentMask和每个segment里的HashEntry数组来实现的。
      1.初始化segments数组
      让我们来看一下初始化segments数组的源代码。
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
      int sshift = 0;
      int ssize = 1;
      while (ssize < concurrencyLevel) {//如果ssize小于concurrentcylevel并发级别,则一直进行++,concurrentcylevel可以自定义,也可使用默认值16
         ++sshift;
         ssize <<= 1;
      }
      segmentShift = 32 - sshift;
      segmentMask = ssize - 1;
      this.segments = Segment.newArray(ssize);//初始化segments数组,ssize表示segment数组的长度
      从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小2的次幂值。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。至于更详细的原因,有兴趣的话可以参考另一篇文章HashMap实现原理及源码分析,其中对于数组长度为什么一定要是2的次幂有较为详细的分析。

     2.初始化segmentShift和segmentMask

      segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。

      这两个全局变量需要在定位segment时的散列算法里使用,sshift等于ssize从1向左移位的次数,在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。segmentShift用于定位参与散列运算的位数,segmentShift等于32减sshift,所以等于28,这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的,后面的测试中我们可以看到这点。segmentMask是散列运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因为ssize的最大长度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,对应的二进制是16位,每个位都是1。

    关于segmentShift和segmentMask

      segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性

      segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。

    3.初始化每个segment
      输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize; //ssize=5 initialCapacity=10
        if (c * ssize < initialCapacity)
          ++c; //7
        int cap = 1;
        while (cap < c)
          cap <<= 1; //8
        for (int i = 0; i < this.segments.length; ++i)
          this.segments[i] = new Segment<K,V>(cap, loadFactor); //(8,0.75)
      上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就会取大于等于c的最小值整数的2N次幂值,所以由于cap是大于1小于2的,就是2的N次方。segment的容量阈值threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算cap等于1,threshold等于零。
    3.put操作
    public V put(K key, V value) {
            Segment<K,V> s;
            //concurrentHashMap不允许key/value为空
            if (value == null)
                throw new NullPointerException();
            //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
            int hash = hash(key);
            //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                s = ensureSegment(j);
            return s.put(key, hash, value, false);
        }

      从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法

    V put(K key, int hash, V value, boolean onlyIfAbsent) {
        lock();
        try {
            int c = count;
            if (c++ > threshold) // 如果Segment中元素的数量超过了阈值(由构造函数中的loadFactor算出)这需要进行对Segment扩容,并且要进行rehash,
                rehash();
            HashEntry<K,V>[] tab = table;
            int index = hash & (tab.length - 1);
            HashEntry<K,V> first = tab[index];//getFirst的过程,确定链表头部的位置
            HashEntry<K,V> e = first;
         //在链表中寻找和要put的元素相同key的元素,如果找到,就直接覆盖key的value,如果没有找到,则进入**行这里,生成一个新的HashEntry并且把它加到整个Segment的头部,然后再更新count的值。
            while (e != null && (e.hash != hash || !key.equals(e.key)))
                e = e.next;
         V oldValue;
            if (e != null) {
                oldValue = e.value;
                if (!onlyIfAbsent)
                    e.value = value;
            }
        **  else {
                oldValue = null;
                ++modCount;
                tab[index] = new HashEntry<K,V>(key, hash, first, value);
                count = c; // write-volatile
            }
            return oldValue;
        } finally {
            unlock();
        }
    }
      由于Segment的put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须加锁。第一个put方法已经定位到Segment,然后这个方法中就是在Segment里进行插入操作。此方法插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置,然后将其放在HashEntry数组里。
    (1)是否需要扩容
      在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,则对数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。
    (2)如何扩容
      在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

    (3)对于ConcurrentHashMap的数据插入,这里要进行两次Hash去定位数据的存储位置。

    1
    static class Segment<K,V> extends ReentrantLock implements Serializable {

      从上Segment的继承体系可以看出,Segment实现了ReentrantLock,也就带有锁的功能,当执行put操作时,会进行第一次key的hash来定位Segment的位置,如果该Segment还没有初始化,即通过CAS操作进行初始化,然后进行第二次hash操作,找到相应的HashEntry的位置,这里会利用继承过来的锁的特性,在将数据插入指定的HashEntry位置时(链表的尾端),会通过继承ReentrantLock的tryLock()方法尝试去获取锁,如果获取成功就直接插入相应的位置,如果已经有线程获取该Segment的锁,那当前线程会以自旋的方式去继续的调用tryLock()方法去获取锁,超过指定次数就挂起,等待唤醒。

    get操作

    ConcurrentHashMap的get操作跟HashMap类似,只是ConcurrentHashMap第一次需要经过一次hash定位到Segment的位置,然后再hash定位到指定的HashEntry,遍历该HashEntry下的链表进行对比,成功就返回,不成功就返回null。

     1.8版本的ConcurrentHashMap

    1、ConcurrentHashMap原理

       在ConcurrentHashMap中通过一个Node<K,V>[]数组来保存添加到map中的键值对,而在同一个数组位置是通过链表和红黑树的形式来保存的。但是这个数组只有在第一次添加元素的时候才会初始化,在刚开始建立时只是初始化一个ConcurrentHashMap对象的话,只是设定了一个sizeCtl变量,这个变量用来判断对象的一些状态和是否需要扩容,后面会详细解释。

      第一次添加元素的时候,默认初期长度为16,当往map中继续添加元素的时候,通过hash值跟table数组长度取与运算来决定要放在数组的哪个位置,如果出现放在同一个位置的时候,优先以链表的形式存放,在同一个位置的个数又达到了8个以上,如果table数组的长度还小于64的时候,则会扩容数组。如果table数组的长度大于等于64了的话,在会将该节点的链表转换成树。

      通过扩容数组的方式来把这些节点给分散开。然后将这些元素复制到扩容后的新的数组中,同一个链表中的元素通过hash值的数组长度位来区分,是还是放在原来的位置还是放到扩容的长度的相同位置去 。在扩容完成之后,如果某个节点的是树,同时现在该节点的个数又小于等于6个了,则会将该树转为链表。

      取元素的时候,相对来说比较简单,通过计算hash来确定该元素在数组的哪个位置,然后在通过遍历链表或树来判断key和key的hash,取出value值。

      往ConcurrentHashMap中添加元素的时候,往哪个位置添加,则锁住哪个位置,ConcurrentHashMap里面的数据以数组的形式存放的样子大概是这样的:

     

      这个时候因为数组的长度才为16,则不会转化为树,而是会进行扩容。

      扩容后数组大概是这样的:

      

      需要注意的是,扩容之后的长度不是32,扩容后的长度在后面细说。

      如果数组扩张后长度达到64了,且继续在某个节点的后面添加元素达到8个以上的时候,则会出现转化为红黑树的情况。

      转化之后大概是这样:

    2.ConcurrentHashMap的初始化

      ConcurrentHashMap初始化方法是通过initialCapacity、loadFactor和concurrencyLevel等几个参数来初始化的。
      构造函数:
    public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {//initialCapacity是segment数组的大小,loadFactor是加载因子,concurrentLevel是segment元素的个数
            if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();
            if (initialCapacity < concurrencyLevel)   
                initialCapacity = concurrencyLevel;  
            long size = (long)(1.0 + (long)initialCapacity / loadFactor);
            int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size);
            this.sizeCtl = cap;
        }
    private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

      可以看到,在任何一个构造方法中,都没有对存储Map元素Node类型的table变量进行初始化。而是在第一次put操作的时候在进行初始化。

      初始化数组:

    /**
         * 初始化数组table,
         * 如果sizeCtl小于0,说明别的数组正在进行初始化,则让出执行权
         * 如果sizeCtl大于0的话,则初始化一个大小为sizeCtl的数组
         * 否则的话初始化一个默认大小(16)的数组
         * 然后设置sizeCtl的值为数组长度的3/4
         */
        private final Node<K,V>[] initTable() {
            Node<K,V>[] tab; 
         int sc; while ((tab = table) == null || tab.length == 0) { //第一次put的时候,table还没被初始化,进入while if ((sc = sizeCtl) < 0) //sizeCtl初始值为0,当小于0的时候表示在别的线程在初始化表或扩展表 Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //SIZECTL:表示当前对象的内存偏移量,sc表示期望值,-1表示要替换的值,设定为-1表示要初始化表了 try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; //指定了大小的时候就创建指定大小的Node数组,否则创建指定大小(16)的Node数组 @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; //初始化后,sizeCtl长度为数组长度的3/4 } break; } } return tab; }

    3、ConcurrentHashMap的put操作详解

      下面看看put方法的源码

    /*
         *    单纯的额调用putVal方法,并且putVal的第三个参数设置为false
         *  当设置为false的时候表示这个value一定会设置
         *  true的时候,只有当这个key的value为空的时候才会设置
         */
        public V put(K key, V value) {
            return putVal(key, value, false);
        }

      再来看putVal

     /*
         * 当添加一对键值对的时候,首先会去判断保存这些键值对的table数组是不是初始化了,
         * 如果没有就先进初始化数组
         * 然后通过计算hash值来确定放在table数组的哪个位置
         * 如果这个位置为空则直接添加,如果不为空的话,则取出这个节点来
         * 如果取出来的节点的hash值是MOVED(-1)的话,则表示当前正在对这个数组进行扩容,复制到新的数组,则当前线程也去帮助复制
         * 最后一种情况就是,如果这个节点,不为空,也不在扩容,则通过synchronized来加锁,进行添加操作
         * 然后判断当前取出的节点位置存放的是链表还是树
         * 如果是链表的话,则遍历整个链表,直到取出来的节点的key来个要放的key进行比较,如果key相等,并且key的hash值也相等的话,
         * 则说明是同一个key,则覆盖掉value,否则的话则添加到链表的末尾
         * 如果是树的话,则调用putTreeVal方法把这个元素添加到树中去
         * 最后在添加完成之后,会判断在该节点处共有多少个节点(注意是添加前的个数),如果达到8个以上了的话,
         * 则调用treeifyBin方法来尝试将处的链表转为树,或者扩容数组,注意只有在桶数达到64时才会扩容成功
         */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();//K,V都不能为空,否则的话跑出异常
            int hash = spread(key.hashCode());    //取得key的hash值
            int binCount = 0;    //用来计算在这个节点总共有多少个元素,用来控制扩容或者转移为树
            for (Node<K,V>[] tab = table;;) { //1
                Node<K,V> f; int n, i, fh;
                if (tab == null || (n = tab.length) == 0) //判断该table数组是否被初始化过   
                    tab = initTable();    //第一次put的时候table没有初始化,则调用initTable()方法初始化table
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //通过哈希计算出一个表中的位置因为n是数组的长度,所以(n-1)&hash肯定不会出现数组越界                 
               /*
                *f记录的是这个位置的元素,如果这个位置没有元素的话,则通过cas的方式尝试添加,注意这个时候是没有加锁的
                */
               if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))//创建一个Node添加到数组中,null表示的是下一个节点为空
                         break;  // 
                }else if ((fh = f.hash) == MOVED)
            /* 能走到这一步说明该位置不为空
               * 如果检测到该位置节点的hash值是MOVED,则表示正在进行数组扩张的数据复制阶段,
                  * 则当前线程也会参与去复制,通过允许多线程复制的功能,一次来减少数组的复制所带来的性能损失
                  */
                tab = helpTransfer(tab, f);
                else {//2
                    /* 走到这一步就说明这个位置有元素,且数组没有在进行扩容
                     * 这时候就采用synchronized的方式加锁
                     * 如果是链表的话(hash大于0),就对这个链表的所有元素进行遍历,
                     * 如果找到了key和key的hash值都一样的节点,则把它的值替换掉
                     * 如果没找到的话,则添加在链表的最后面
                     * 否则,是树的话,则调用putTreeVal方法添加到树中去
                     *  
                     *  在添加完之后,会对该节点上关联的的数目进行判断,
                     *  如果在8个以上的话,则会调用treeifyBin方法,来尝试转化为树,或者是扩容
                     */
                   V oldVal = null;
                   synchronized (f) {//往哪个位置存,则锁住哪个位置
                     if (tabAt(tab, i) == f) { //再次取出要存储的位置的元素,跟前面取出来的比较
                         if (fh >= 0) {   //取出来的元素的hash值大于0,当转换为树之后,hash值为-2
                             binCount = 1;            
                              for (Node<K,V> e = f;; ++binCount) {//遍历这个链表
                                   K ek;
                                   if (e.hash == hash&&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {//要存的元素的hash,key跟要存储的位置的节点的相同的时候,替换掉该节点的value即可
                          oldVal = e.val;
                                         if (!onlyIfAbsent)  //当使用putIfAbsent的时候,只有在这个key没有设置值得时候才设置
                                              e.val = value;
                                             break;
                                       }
                                   Node<K,V> pred = e;
                                   if ((e = e.next) == null) { //如果不是同样的hash,同样的key的时候,则判断该节点的下一个节点是否为空,不为空接着循环,遍历这个链表
                                         pred.next = new Node<K,V>(hash,key,value, null); //为空的话把这个要加入的节点设置为当前节点的下一个节点
                           break;
                                   }
                               }//for
                           }else if (f instanceof TreeBin) {    //表示已经转化成红黑树类型了
                             Node<K,V> p;
                             binCount = 2;
                             if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,    //调用putTreeVal方法,将该元素添加到树中去
                                                               value)) != null) {
                                  oldVal = p.val;
                                  if (!onlyIfAbsent)p.val = value;
                              }
                          }
                }//if (tabAt(tab, i) == f)
              }// synchronized (f)
                  if (binCount != 0) {
                         if (binCount >= TREEIFY_THRESHOLD)    
                             treeifyBin(tab, i);  //当在同一个节点的数目达到8个的时候,则扩张数组或将给节点的数据转为tree  
                         if (oldVal != null)
                             return oldVal;
                         break;
                   }
              }//2
          }//1
          addCount(1L, binCount);    //计数
          return null;
    }

    put操作

    对于ConcurrentHashMap的数据插入,这里要进行两次Hash去定位数据的存储位置

    1
    static class Segment<K,V> extends ReentrantLock implements Serializable {

    从上Segment的继承体系可以看出,Segment实现了ReentrantLock,也就带有锁的功能,当执行put操作时,会进行第一次key的hash来定位Segment的位置,如果该Segment还没有初始化,即通过CAS操作进行赋值,然后进行第二次hash操作,找到相应的HashEntry的位置,这里会利用继承过来的锁的特性,在将数据插入指定的HashEntry位置时(链表的尾端),会通过继承ReentrantLock的tryLock()方法尝试去获取锁,如果获取成功就直接插入相应的位置,如果已经有线程获取该Segment的锁,那当前线程会以自旋的方式去继续的调用tryLock()方法去获取锁,超过指定次数就挂起,等待唤醒

    get操作

    ConcurrentHashMap的get操作跟HashMap类似,只是ConcurrentHashMap第一次需要经过一次hash定位到Segment的位置,然后再hash定位到指定的HashEntry,遍历该HashEntry下的链表进行对比,成功就返回,不成功就返回null

    size操作

    计算ConcurrentHashMap的元素大小是一个有趣的问题,因为他是并发操作的,就是在你计算size的时候,他还在并发的插入数据,可能会导致你计算出来的size和你实际的size有相差(在你return size的时候,插入了多个数据),要解决这个问题,JDK1.7版本用两种方案

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    try {
        for (;;) {
            if (retries++ == RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation
            }
            sum = 0L;
            size = 0;
            overflow = false;
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0)
                   overflow = true;
                } }
            if (sum == last) break;
            last = sum; } }
    finally {
        if (retries > RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    1. 第一种方案他会使用不加锁的模式去尝试多次计算ConcurrentHashMap的size,最多三次,比较前后两次计算的结果,结果一致就认为当前没有元素加入,计算的结果是准确的
    2. 第二种方案是如果第一种方案不符合,他就会给每个Segment加上锁,然后计算ConcurrentHashMap的size返回

    JDK1.8的实现

  • 相关阅读:
    个性实用的SQL语句
    SiteMesh简介
    oracle基本操作
    java项目中获得不同状态下的磁盘根目录和相对目录。
    linux下安装weblogic 10.3.2.0 及mysql数据源的配置
    SQL Serve 查询所有可用的数据库语句
    [传智播客学习日记]简单工厂模式计算器案例
    [传智播客学习日记]SqlHelper与DataSet
    [传智播客学习日记]序列化、XML序列化与深拷贝操作
    [传智播客学习日记]10月18日第一天正式上课
  • 原文地址:https://www.cnblogs.com/ljl150/p/12621649.html
Copyright © 2011-2022 走看看