zoukankan      html  css  js  c++  java
  • 柯朗数(Courant number)研究

    在数值计算过程中,对于计算结果的准确性和效率有很高的要求,但是这两者之间往往互相矛盾;而使用柯朗数可用于平衡两者。

    1、柯朗数的定义:

     C = sqrt(gh)*t/s

    其中,t是时间步长,s是网格在水平方向的间距。

    柯朗数的意义在于表示了在单位时间步长中,有多少个网格的信息发生了移动。经过正确的调整,可以更好地加速收敛和增强解的稳定性。

    2、C语言实现柯朗数计算:

    依据上述方程,在实际计算中采用C语言实现计算固液界面上的柯朗数,结果如下:

      1 void localCourantNumber()
      2 {
      3 
      4 
      5     double rhoe,rhon,rhot;    
      6 
      7     for(i=2;i<=nxm-1;i++)    //Calculation of local Courant number only at internal faces
      8       {
      9         ieast     = i + 1;
     10         dxpe = xc[ieast] - xc[i];
     11         fxe = (xf[i]-xc[i])/dxpe;        
     12         fxp = 1.0 - fxe;
     13 
     14             for(j=2;j<=nym;j++)
     15         {
     16             jnorth    = j + 1;
     17             dypn = yc[jnorth] - yc[j];
     18             fyn = (yf[j] - yc[j])/dypn;    
     19                 fyp = 1.0 - fyn;
     20     
     21               for(k=2;k<=nzm;k++)
     22             {
     23                 ktop      = k + 1;
     24                 dzpt = zc[ktop]-zc[k];
     25                 fzt = (zf[k] - zc[k])/dzpt;
     26                 fzp = 1.0 - fzt;
     27 
     28             
     29                 
     30                 //Calculating density at cell interface
     31                 rhoe = fxp * rho[i][j][k] +   fxe * rho[ieast][j][k];
     32                 
     33 /*                rhoe = 2.0 * rho[i][j][k] * rho[ieast][j][k]/( rho[i][j][k] + rho[ieast][j][k]);*/
     34 
     35                 s = (yf[j]-yf[j-1])*(zf[k]-zf[k-1]);
     36                       vole = dxpe * s;
     37 
     38 
     39                  //Sum of courant numbers of outflow faces of donor cell
     40                 Ce[i][j][k] = fabs(Fe[i][j][k]/(rhoe*vole))*dt;
     41 
     42 /*                printf("Ce=%e\n",Ce[i][j][k]);*/
     43             }
     44         }
     45     }
     46     
     47     
     48         for(i=2;i<=nxm;i++)    //Calculation of local Courant number only at internal faces
     49       {
     50         ieast     = i + 1;
     51         dxpe = xc[ieast] - xc[i];
     52         fxe = (xf[i]-xc[i])/dxpe;        
     53         fxp = 1.0 - fxe;
     54 
     55             for(j=2;j<=nym-1;j++)
     56         {
     57             jnorth    = j + 1;
     58             dypn = yc[jnorth] - yc[j];
     59             fyn = (yf[j] - yc[j])/dypn;    
     60                 fyp = 1.0 - fyn;
     61     
     62               for(k=2;k<=nzm;k++)
     63             {
     64                 ktop      = k + 1;
     65                 dzpt = zc[ktop]-zc[k];
     66                 fzt = (zf[k] - zc[k])/dzpt;
     67                 fzp = 1.0 - fzt;
     68 
     69             
     70                 
     71                 //Calculating density at cell interface
     72                 rhon = fyp * rho[i][j][k] +   fyn * rho[i][jnorth][k];
     73                 
     74 /*                rhon = 2.0 * rho[i][j][k] * rho[i][jnorth][k]/( rho[i][j][k] + rho[i][jnorth][k]);*/
     75 
     76 
     77                 s = (xf[i]-xf[i-1])*(zf[k]-zf[k-1]);
     78                 voln = s * dypn;
     79 
     80 
     81                  //Sum of courant numbers of outflow faces of donor cell
     82                 Cn[i][j][k] = fabs(Fn[i][j][k]/(rhon*voln))*dt;
     83                 
     84 /*                printf("Ce=%e\n",Ce[i][j][k]);*/
     85             }
     86         }
     87     }
     88     
     89     for(i=2;i<=nxm;i++)    //Calculation of local Courant number only at internal faces
     90       {
     91         ieast     = i + 1;
     92         dxpe = xc[ieast] - xc[i];
     93         fxe = (xf[i]-xc[i])/dxpe;        
     94         fxp = 1.0 - fxe;
     95 
     96             for(j=2;j<=nym;j++)
     97         {
     98             jnorth    = j + 1;
     99             dypn = yc[jnorth] - yc[j];
    100             fyn = (yf[j] - yc[j])/dypn;    
    101                 fyp = 1.0 - fyn;
    102     
    103               for(k=2;k<=nzm-1;k++)
    104             {
    105                 ktop      = k + 1;
    106                 dzpt = zc[ktop]-zc[k];
    107                 fzt = (zf[k] - zc[k])/dzpt;
    108                 fzp = 1.0 - fzt;
    109 
    110             
    111                 
    112                 //Calculating density at cell interface
    113                 rhot = fzp * rho[i][j][k] +   fzt * rho[i][j][ktop];
    114                 
    115 /*                rhot = 2.0 * rho[i][j][k] * rho[i][j][ktop]/( rho[i][j][k] + rho[i][j][ktop]);*/
    116 
    117 
    118                 s = (xf[i]-xf[i-1])*(yf[j]-yf[j-1]);
    119                 volt = s * dzpt;
    120 
    121 
    122                  //Sum of courant numbers of outflow faces of donor cell
    123                 Ct[i][j][k] = fabs(Ft[i][j][k]/(rhot*volt))*dt;
    124 
    125                 
    126                 
    127 /*                printf("Ce=%e\n",Ce[i][j][k]);*/
    128             }
    129         }
    130     }
    131     
    132     
    133     for(i=2;i<=nxm;i++)    //Calculation of local Courant number only at internal faces
    134       {
    135 
    136             for(j=2;j<=nym;j++)
    137         {
    138     
    139               for(k=2;k<=nzm;k++)
    140             {
    141             
    142                 COutD[i][j][k] = Ce[i][j][k] + Cn[i][j][k] + Ct[i][j][k];
    143 /*                printf("COutD=%lf\n",COutD[i][j][k]);*/
    144 /*                printf("Ce=%e\n",Ce[i][j][k]);*/
    145 /*                printf("Cn=%e\n",Cn[i][j][k]);*/
    146 /*                printf("Ct=%e\n",Ct[i][j][k]);*/
    147             }
    148         }
    149     }
    150     
    151     
    152 } 

    3、柯朗数使用的注意事项:

    在fluent中,用courant number 来调节计算的稳定性与收敛性。一般来说,随着courantnumber 的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把Courant number 从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number 的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。

    Generally, in the explicit schemes of differential method, Courant number is an important number which should be less than 1 in order to assure the stability. However, if the Courant number is too small, much computation time will be lost. So the Courant number could be one of those important parameters affecting computation cost and stability. we could use Courant number to control the time step in the transient simulation in CFD codes. Here is some configuration parameters which could be used in simulation with OpenFOAM。

  • 相关阅读:
    POJ_1456 Supermarket 【并查集/贪心】
    CSS before和after伪类
    CSS anchor专为链接属性选择器
    CSS 属性选择器
    CSS float浮动
    CSS 外边距和内填充
    CSS 边框属性
    CSS 背景
    CSS 组和选择器
    CSS 引入方式
  • 原文地址:https://www.cnblogs.com/ljmjjy0820/p/5932098.html
Copyright © 2011-2022 走看看