乍一看上去根本无法下手,由于翻转会使元素的位置发生改变,故不能使用差分;而暴力又必然TLE。于是无耻地参(zhao)考(chao)了题解区神犇的思路……
题意
维护一个数据结构,支持区间翻转。
分析
【定理1】:二叉树的性质
将二叉树上某一棵子树上所有左右儿子交换,得到的新子树的中序遍历恰与原子树中序遍历相反。
证:用归纳法,设子树规模为k
1. 若
2. 若
【定理2】:二叉树上区间旋转性质
设二叉树上有两个元素k, p(中序遍历中k在p左侧),利用Treap旋转将k旋到根,p旋到k的右孩子,则p的左子树恰为原中序遍历中k, p之间的所有元素。
证:由于Treap旋转不改变中序遍历,该结论显然。
基于以上两个定理可以得出以下算法:
1. 用0..n+1
序列建一棵二叉排序树(
2. 对于任何一个询问l, r,找到二叉树中序遍历中为l-1,r+1的两个元素记为p, q(期望
3. 先把q旋转到根,再把p旋转到根(由于p在q的左面,这时,p必然是根,q必然是根的右孩子)(期望
4. 将q的左子树上所有节点的左右孩子交换(用Lazy_Tag,摊还
5. 最后中序遍历输出
代码
代码又丑又长,将就着看吧…
#include <bits/stdc++.h>
using namespace std;
struct node {
int lc, rc, fa;
int dat;
int label;
int lsize, rsize;
node()
{
lsize = rsize = label = fa = lc = rc = dat = 0;
dat = -1;
}
inline int size()
{
if (dat == -1)
return 0;
return lsize + rsize + 1;
}
} tree[1000005];
int top = 0;
int n, m;
int root = 1;
inline void push_label(int i)
{
if (tree[i].label) {
swap(tree[i].lc, tree[i].rc);
swap(tree[i].lsize, tree[i].rsize);
tree[i].label = 0;
tree[tree[i].lc].label ^= 1;
tree[tree[i].rc].label ^= 1;
}
}
int build_tree(int l, int r, int &nd)
{
if (l > r) return 0;
if (l == r) {
tree[nd].dat = l;
return 1;
}
int mid = (l+r)>>1, ths = nd;
tree[nd].dat = mid;
tree[nd].lc = nd+1;
tree[nd+1].fa = ths;
tree[ths].lsize = build_tree(l, mid-1, ++nd);
tree[ths].rc = nd+1;
tree[nd+1].fa = ths;
tree[ths].rsize = build_tree(mid+1, r, ++nd);
return tree[ths].lsize + tree[ths].rsize + 1;
}
void dfs(int i, int tab = 0) // for debugging
{
if (i == 0) return;
push_label(i);
for (int i = 1; i <= tab; i++)
putchar(' ');
cout << tree[i].dat << '(' << tree[i].lsize << ',' << tree[i].rsize << ',' << tree[tree[i].fa].dat << ')' << endl;
dfs(tree[i].lc, tab+2);
dfs(tree[i].rc, tab+2);
}
void print(int i)
{
if (i == 0) return;
push_label(i);
print(tree[i].lc);
if (tree[i].dat >= 1 && tree[i].dat <= n)
printf("%d ", tree[i].dat);
print(tree[i].rc);
}
inline void lift_left_up(int i)
{
if (i == root)
root = tree[i].lc;
push_label(i);
int pos = tree[i].lc;
tree[i].lc = tree[pos].rc;
tree[tree[pos].rc].fa = i;
tree[pos].rc = i;
tree[pos].fa = tree[i].fa;
tree[i].fa = pos;
if (tree[tree[pos].fa].rc == i)
tree[tree[pos].fa].rc = pos;
else
tree[tree[pos].fa].lc = pos;
tree[i].lsize = tree[tree[i].lc].size();
tree[pos].rsize = tree[tree[pos].rc].size();
//cout << tree[i].dat << " Lift Left Up Get :
";
//dfs(root);
}
inline void lift_right_up(int i)
{
if (i == root)
root = tree[i].rc;
push_label(i);
int pos = tree[i].rc;
tree[i].rc = tree[pos].lc;
tree[tree[pos].lc].fa = i;
tree[pos].lc = i;
tree[pos].fa = tree[i].fa;
tree[i].fa = pos;
if (tree[tree[pos].fa].rc == i)
tree[tree[pos].fa].rc = pos;
else
tree[tree[pos].fa].lc = pos;
tree[i].rsize = tree[tree[i].rc].size();
tree[pos].lsize = tree[tree[pos].lc].size();
//cout << tree[i].dat << " Lift Right Up Get :
";
//dfs(root);
}
inline void lift_up(int i)
{
push_label(i);
if (i == tree[tree[i].fa].lc)
lift_left_up(tree[i].fa);
else
lift_right_up(tree[i].fa);
}
int find_kth(int i, int k) // from i, find the first element with k pre_element
{
push_label(i);
if (tree[i].lsize == k)
return i;
if (tree[i].lsize > k)
return find_kth(tree[i].lc, k);
else
return find_kth(tree[i].rc, k-tree[i].lsize-1);
}
void lift(int l, int r)
{
l = find_kth(root, l-1);
r = find_kth(root, r+1);
//cout << tree[l].dat << " " << tree[r].dat << endl;
while (r != root)
lift_up(r);
while (l != root)
lift_up(l);
tree[tree[r].lc].label ^= 1;
//cout << "Successfully dealed " << l << " , " << r << endl;
}
int main()
{
scanf("%d%d", &n, &m);
build_tree(0, n+1, ++top);
int l, r;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &l, &r);
lift(l, r);
}
print(root);
return 0;
}
总结
这个题说实话要不是题目提示根本想不到用树……建(二声)模(轻声)思(三声)想(三声)及其(连读加快)诡(四声)异(二声),代(二声)码(轻声)量(二声)极大(连读加重,三声、二声)。【强行Orz物理老师】
将交换左右子树的操作改变可以开发出其他功能,例如区间修改、找区间k大和区间求和(貌似代替了许多树套树的操作?)。区间问题又多了一个武器2333……