zoukankan      html  css  js  c++  java
  • luogu解题报告:P3391文艺平衡树

    https://www.luogu.org/problem/show?pid=3391

    乍一看上去根本无法下手,由于翻转会使元素的位置发生改变,故不能使用差分;而暴力又必然TLE。于是无耻地参(zhao)考(chao)了题解区神犇的思路……

    题意

    维护一个数据结构,支持区间翻转。

    分析

    【定理1】:二叉树的性质
    将二叉树上某一棵子树上所有左右儿子交换,得到的新子树的中序遍历恰与原子树中序遍历相反

    证:用归纳法,设子树规模为k
    1. 若k=1,显然成立
    2. 若k>1,设根为nr,子树的中序遍历为n1,n2,n3,...,nr1,nr,nr+1,...,nk,若对于左右子树均成立,(原)左子树的中序遍历变为:nr1,nr2,...,n1,(原)右子树的中序遍历变为:nk,nk1,...,nr+1,将左右子树交换,变为:nk,nk1,nk2,...,nr+1,nr,nr1,...n1,要求成立。根据归纳原理,原命题得证。

    【定理2】:二叉树上区间旋转性质
    设二叉树上有两个元素k, p(中序遍历中k在p左侧),利用Treap旋转将k旋到根,p旋到k的右孩子,则p的左子树恰为原中序遍历中k, p之间的所有元素

    证:由于Treap旋转不改变中序遍历,该结论显然。

    基于以上两个定理可以得出以下算法:
    1. 用0..n+1序列建一棵二叉排序树(Θ(nlgn));
    2. 对于任何一个询问l, r,找到二叉树中序遍历中为l-1,r+1的两个元素记为p, q(期望Θ(lgn));
    3. 先把q旋转到根,再把p旋转到根(由于p在q的左面,这时,p必然是根,q必然是根的右孩子)(期望Θ(lgn));
    4. 将q的左子树上所有节点的左右孩子交换(用Lazy_Tag,摊还Θ(1));
    5. 最后中序遍历输出[1,n]中所有元素即可

    代码

    代码又丑又长,将就着看吧…

    #include <bits/stdc++.h>
    using namespace std;
    
    struct node {
            int lc, rc, fa;
            int dat;
            int label;
            int lsize, rsize;
            node()
            {
                    lsize = rsize = label = fa = lc = rc = dat = 0;
                    dat = -1;
            }
            inline int size()
            {
                    if (dat == -1)
                            return 0;
                    return lsize + rsize + 1;
            }
    } tree[1000005];
    int top = 0;
    int n, m;
    int root = 1;
    
    inline void push_label(int i)
    {
            if (tree[i].label) {
                    swap(tree[i].lc, tree[i].rc);
                    swap(tree[i].lsize, tree[i].rsize);
                    tree[i].label = 0;
                    tree[tree[i].lc].label ^= 1;
                    tree[tree[i].rc].label ^= 1;
            }
    }
    
    int build_tree(int l, int r, int &nd)
    {
            if (l > r) return 0;
            if (l == r) {
                    tree[nd].dat = l;
                    return 1;
            }
            int mid = (l+r)>>1, ths = nd;
            tree[nd].dat = mid;
            tree[nd].lc = nd+1;
            tree[nd+1].fa = ths;
            tree[ths].lsize = build_tree(l, mid-1, ++nd);
            tree[ths].rc = nd+1;
            tree[nd+1].fa = ths;
            tree[ths].rsize = build_tree(mid+1, r, ++nd);
            return tree[ths].lsize + tree[ths].rsize + 1;
    }
    
    void dfs(int i, int tab = 0) // for debugging
    {
            if (i == 0) return;
            push_label(i);
            for (int i = 1; i <= tab; i++)
                    putchar(' ');
            cout << tree[i].dat << '(' << tree[i].lsize << ',' << tree[i].rsize << ',' << tree[tree[i].fa].dat << ')' << endl;
            dfs(tree[i].lc, tab+2);
            dfs(tree[i].rc, tab+2);
    }
    
    void print(int i)
    {
            if (i == 0) return;
            push_label(i);
            print(tree[i].lc);
            if (tree[i].dat >= 1 && tree[i].dat <= n)
                    printf("%d ", tree[i].dat);
            print(tree[i].rc);
    }
    inline void lift_left_up(int i)
    {
            if (i == root)
                    root = tree[i].lc;
            push_label(i);
            int pos = tree[i].lc;
            tree[i].lc = tree[pos].rc;
            tree[tree[pos].rc].fa = i;
            tree[pos].rc = i;
            tree[pos].fa = tree[i].fa;
            tree[i].fa = pos;
            if (tree[tree[pos].fa].rc == i)
                    tree[tree[pos].fa].rc = pos;
            else
                    tree[tree[pos].fa].lc = pos;
            tree[i].lsize = tree[tree[i].lc].size();
            tree[pos].rsize = tree[tree[pos].rc].size();
            //cout << tree[i].dat << " Lift Left Up Get : 
    ";
            //dfs(root);
    }
    
    inline void lift_right_up(int i)
    {
            if (i == root)
                    root = tree[i].rc;
            push_label(i);
            int pos = tree[i].rc;
            tree[i].rc = tree[pos].lc;
            tree[tree[pos].lc].fa = i;
            tree[pos].lc = i;
            tree[pos].fa = tree[i].fa;
            tree[i].fa = pos;
            if (tree[tree[pos].fa].rc == i)
                    tree[tree[pos].fa].rc = pos;
            else
                    tree[tree[pos].fa].lc = pos;
            tree[i].rsize = tree[tree[i].rc].size();
            tree[pos].lsize = tree[tree[pos].lc].size();
            //cout << tree[i].dat << " Lift Right Up Get : 
    ";
            //dfs(root);
    }
    
    inline void lift_up(int i)
    {
            push_label(i);
            if (i == tree[tree[i].fa].lc)
                    lift_left_up(tree[i].fa);
            else
                    lift_right_up(tree[i].fa);
    }
    
    int find_kth(int i, int k) // from i, find the first element with k pre_element
    {
            push_label(i);
            if (tree[i].lsize == k) 
                    return i;
            if (tree[i].lsize > k)
                    return find_kth(tree[i].lc, k);
            else 
                    return find_kth(tree[i].rc, k-tree[i].lsize-1);
    }
    
    void lift(int l, int r)
    {
            l = find_kth(root, l-1);
            r = find_kth(root, r+1);
            //cout << tree[l].dat << " " << tree[r].dat << endl;
            while (r != root) 
                    lift_up(r);
            while (l != root)
                    lift_up(l);
            tree[tree[r].lc].label ^= 1;
            //cout << "Successfully dealed " << l << " , " << r << endl;
    }
    
    int main()
    {
            scanf("%d%d", &n, &m);
            build_tree(0, n+1, ++top);
            int l, r;
            for (int i = 1; i <= m; i++) {
                    scanf("%d%d", &l, &r);
                    lift(l, r);
            }
            print(root);
            return 0;
    }

    总结

    这个题说实话要不是题目提示根本想不到用树……建(二声)模(轻声)思(三声)想(三声)及其(连读加快)诡(四声)异(二声),代(二声)码(轻声)量(二声)极大(连读加重,三声、二声)。【强行Orz物理老师

    将交换左右子树的操作改变可以开发出其他功能,例如区间修改、找区间k大和区间求和(貌似代替了许多树套树的操作?)。区间问题又多了一个武器2333……

  • 相关阅读:
    .net中对象序列化技术
    new、virtual、override
    如何检测指定的Windows服务是否启动
    c#中的GetUpperBound,GetLowerBound方法
    C#.net中的rank方法
    实现MD5算法
    用C#实现DES加密解密封装
    [转]JSP或servlet中(以及上传下载文件)中文乱码或不显示的解决方案
    [转]runOnUiThread 、 Handler 对比(一)
    [转]使用popBackStack()清除Fragment
  • 原文地址:https://www.cnblogs.com/ljt12138/p/6684361.html
Copyright © 2011-2022 走看看