zoukankan      html  css  js  c++  java
  • 一个简单的人物图片相似对比程序

    程序是参考了两部分的别人的代码,一个是找出照片中的人头,另一个是对两个人头照片做对比。

    # -*- coding: utf-8 -*-
    # feimengjuan
    # 利用python实现多种方法来实现图像识别
    
    import cv2
    import numpy as np
    from matplotlib import pyplot as plt, image
    
    
    # 最简单的以灰度直方图作为相似比较的实现
    def classify_gray_hist(image1, image2, size=(256, 256)):
        # 先计算直方图
        # 几个参数必须用方括号括起来
        # 这里直接用灰度图计算直方图,所以是使用第一个通道,
        # 也可以进行通道分离后,得到多个通道的直方图
        # bins 取为16
        image1 = cv2.resize(image1, size)
        image2 = cv2.resize(image2, size)
        hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
        hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
        # 可以比较下直方图
        plt.plot(range(256), hist1, 'r')
        plt.plot(range(256), hist2, 'b')
        plt.show()
        # 计算直方图的重合度
        degree = 0
        for i in range(len(hist1)):
            if hist1[i] != hist2[i]:
                degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
            else:
                degree = degree + 1
        degree = degree / len(hist1)
        return degree
    
    
    # 计算单通道的直方图的相似值
    def calculate(image1, image2):
        hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
        hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
        # 计算直方图的重合度
        degree = 0
        for i in range(len(hist1)):
            if hist1[i] != hist2[i]:
                degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
            else:
                degree = degree + 1
        degree = degree / len(hist1)
        return degree
    
    
    # 通过得到每个通道的直方图来计算相似度
    def classify_hist_with_split(image1, image2, size=(256, 256)):
        # 将图像resize后,分离为三个通道,再计算每个通道的相似值
        image1 = cv2.resize(image1, size)
        image2 = cv2.resize(image2, size)
        sub_image1 = cv2.split(image1)
        sub_image2 = cv2.split(image2)
        sub_data = 0
        for im1, im2 in zip(sub_image1, sub_image2):
            sub_data += calculate(im1, im2)
        sub_data = sub_data / 3
        return sub_data
    
    
    # 平均哈希算法计算
    def classify_aHash(image1, image2):
        image1 = cv2.resize(image1, (8, 8))
        image2 = cv2.resize(image2, (8, 8))
        gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
        gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
        hash1 = getHash(gray1)
        hash2 = getHash(gray2)
        return Hamming_distance(hash1, hash2)
    
    
    def classify_pHash(image1, image2):
        image1 = cv2.resize(image1, (32, 32))
        image2 = cv2.resize(image2, (32, 32))
        gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
        gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
        # 将灰度图转为浮点型,再进行dct变换
        dct1 = cv2.dct(np.float32(gray1))
        dct2 = cv2.dct(np.float32(gray2))
        # 取左上角的8*8,这些代表图片的最低频率
        # 这个操作等价于c++中利用opencv实现的掩码操作
        # 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分
        dct1_roi = dct1[0:8, 0:8]
        dct2_roi = dct2[0:8, 0:8]
        hash1 = getHash(dct1_roi)
        hash2 = getHash(dct2_roi)
        return Hamming_distance(hash1, hash2)
    
    
    # 输入灰度图,返回hash
    def getHash(image):
        avreage = np.mean(image)
        hash = []
        for i in range(image.shape[0]):
            for j in range(image.shape[1]):
                if image[i, j] > avreage:
                    hash.append(1)
                else:
                    hash.append(0)
        return hash
    
    
    # 计算汉明距离
    def Hamming_distance(hash1, hash2):
        num = 0
        for index in range(len(hash1)):
            if hash1[index] != hash2[index]:
                num += 1
        return num
    
    
    if __name__ == '__main__':
        face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
        face_cascade.load('F:pycharmpy2_7Libsite-packagescv2datahaarcascade_frontalface_default.xml')
        scaling_factor = 0.5
        img1 = cv2.imread('d://68.jpg')
        #img1 = cv2.resize(img1,(300,300))
        img1 = cv2.resize(img1, None, fx=scaling_factor * 3, fy=scaling_factor * 3, interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
        face_rects = face_cascade.detectMultiScale(gray, 1.1, 5)
        for (x, y, w, h) in face_rects:
            img1 = img1[y:y + h,x:x + w]
            #cv2.rectangle(img1, (x, y), (x + w, y + h), (0, 255, 0), 3)
    
        img2 = cv2.imread('d://69.jpg')
        #img2 = cv2.resize(img2,(300,300))
        img2 = cv2.resize(img2, None, fx=scaling_factor * 3, fy=scaling_factor * 3, interpolation=cv2.INTER_AREA)
        gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
        face_rects2 = face_cascade.detectMultiScale(gray2, 1.1, 5)
        for (x, y, w, h) in face_rects2:
            img2 = img2[y:y + h,x:x + w]
            #cv2.rectangle(img2, (x, y), (x + w, y + h), (0, 255, 0), 3)
        #degree = classify_gray_hist(img1, img2)
        degree = classify_hist_with_split(img1,img2)
        #degree = classify_aHash(img1,img2)
        #degree = classify_pHash(img1,img2)
        out = format('相似度:%f' % (float)(degree*100))
        print out
        img1 = cv2.resize(img1, (300, 300))
        cv2.imshow('img1', img1)
        img2 = cv2.resize(img2, (300, 300))
        cv2.imshow('img2',img2)
    
        #degree = classify_hist_with_split(img1,img2)
        # degree = classify_aHash(img1,img2)
        # degree = classify_pHash(img1,img2)
        #print degree
        cv2.waitKey(0)
  • 相关阅读:
    使用C#实现计划任务(corn job)
    python 修改xml文件
    redis安装
    Nginx的安装
    nginx配置
    用泛型减少重复代码,使代码更合理、更优雅
    Tomcat server.xml配置详解
    二维码生成
    轻量级的中文分词工具包
    HTML解析利器
  • 原文地址:https://www.cnblogs.com/ljy-1471914707/p/8451892.html
Copyright © 2011-2022 走看看