zoukankan      html  css  js  c++  java
  • 树形DP(超详细!!!)

    一、概念

    1、什么是树型动态规划 

    树型动态规划就是在“树”的数据结构上的动态规划,平时作的动态规划都是线性的或者是建立在图上的,线性的动态规划有二种方向既向前和向后,相应的线性的动态规划有二种方法既顺推与逆推,而树型动态规划是建立在树上的,所以也相应的有二个方向:     

    1. 叶->根:在回溯的时候从叶子节点往上更新信息    
    2. 根 - >叶:往往是在从叶往根dfs一遍之后(相当于预处理),再重新往下获取最后的答案。    

    不管是 从叶->根 还是 从 根 - >叶,两者都是根据需要采用,没有好坏高低之分。

    2、树真的是一种特别特别优美的结构!

    用来做动态规划也简直是锦上添花再美不过的事,因为树本身至少就有“子结构”性质(树和子树);本身就具有递归性。所以在树上DP其实是其所当然的事,相比线性动态规划来讲,转移方程更直观更易理解

    3、难点    

    1. 和线性动态规划相比,树形DP往往是要利用递归+记忆化搜索。    
    2. 细节多,较为复杂的树形DP,从子树,从父亲,从兄弟……一些小的要处理的地方,脑子不清晰的时候做起来颇为恶心    
    3. 状态表示和转移方程,也是真正难的地方。做到后面,树形DP的老套路都也就那么多,难的还是怎么能想出转移方程,各种DP做到最后都是这样!

    二、经典问题

    【树的重心/质心】

    对于一棵n个结点的无根树,找到一个点,使得把树变成以该点为根的有根树时,最大子树的结点数最小,即删除这个点后最大连通块的结点数最小。那么这个点就是树的重心。

    例题:题目大意:对于一棵无根树,找到一个点使得树以该点为根的有根树,最大子树(选择该节点后其子树的最大节点)的节点数最小。

    解法:任选一个结点为根,把无根树变成有根树,然后设f[i]表示以i为根的子树的结点个数。

    程序实现:一次DFS,在无根树转有根树的同时计算。对于结点i,子树中最大结点个数为max{f[j]}个结点,i的“上方子树”中有n-f[i]个结点,只需在dfs过程中找到最大的子树节点,并与其上方的节点数做比较,就可以找出树的重心了。

    补充性质:

    1.树中所有点到某个点的距离和中,到重心的距离和是最小的;如果有两个重心,那么他们的距离和一样。

    2.把两个树通过一条边相连得到一个新的树,那么新的树的重心在连接原来两个树的重心的路径上

    3.把一个树添加或删除一个叶子,那么它的重心最多只移动一条边的距离

    【树的直径】

    树的直径: 树的直径是指树的最长简单路。

    例题:题目大意:对于一棵无根树,找到树的一条直径。假设边权为1。

    解法一:从任意一点u出发搜到的最远的点一定是s、t中的一点,然后在从这个最远点开始搜,就可以搜到另一个最长路的端点,即用两遍广搜就可以找出树的最长路。

     

    解法二:算是树的直径的一个性质,树的直径的长度一定会是某个点的最长距离f[i]与次长距离g[i]之和。最后求出max{f[i]+g[i]}就可以了。 令j是i的儿子,则:

    1、若f[j]+dis[i][j]>f[i],则g[i]=f[i],f[i]=f[j]+dis[i][j];//最大值次大值被更新

    2、否则,若f[j]+dis[i][j]>g[i],则g[i]=f[j]+dis[i][j];//次大值被更新

     

    【树的中心】

    首先题意是在一棵树T中输出每个结点到叶子的最远距离;  

    首先第一个dfs求出所有每个节点i在其子树中的正向最大距离正向次大距离d[i][0]d[i][1](如果i节点在子树中最大距离经过了2号儿子,那么次大距离就是不经过2号儿子的最大距离)。并且还要标记c[i]=j表示节点i在其子树中的最大距离经过了节点j(即j是i的一个儿子)。   

    由上步我们获得了正向最大距离,正向次大距离和最大距离的儿子节点标记。画图可以知道我们建立的这棵树,i节点的最远距离只有两种选择:i节点所在子树的最大距离,或者i节点连接它的父节点所能到达的最大距离。

    所以我们只要求出反向最大距离d[i][2](即i节点往它的父节点走所能到达的最大距离)就可以知道i节点在整个树中能走的最大距离了。 d[i][2]求法:i节点往它的父节j点走,如果它的父节点的正向最大距离不经过i的话,那么d[i][2]要不就是它父节点的反向最大距离+W[i][j]要不就是它父节点的正向最大距离+ W[i][j]. 如果它的父节点的正向最大距离经过i的话,那么d[i][2]要不就是它父节点的反向最大距离+W[i][j]要不就是它父节点的正向次大距离+ W[i][j].   

    上面就是dfs2要求的值。最终f[i]=max(d[i][0],d[i][2])

     

    二、普通树形DP

    普通的树形DP中,常常会采用叶->根的转移形式,根据父亲的状态,来确定子节点的状态,若子节点有多个,则需要一一枚举,将子节点(子树)的DP值合并。

    P1352 没有上司的舞会

    题目描述

    某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

    输入输出格式

    输入格式:

    第一行一个整数N。(1<=N<=6000) 接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127) 接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。

    输出格式:

    输出最大的快乐指数。


     经典的树形dp

    设f[x][0]表示以x为根的子树,且x不参加舞会的最大快乐值

    f[x][1]表示以x为根的子树,且x参加了舞会的最大快乐值

    则f[x][0]=sigma{max(f[y][0],f[y][1])} (y是x的儿子)

    f[x][1]=sigma{f[y][0]}+h[x] (y是x的儿子)

    先找到唯一的树根root 则ans=max(f[root][0],f[root][1])


    P2015 二叉苹果树

    【问题描述】

    有一棵苹果树,如果树枝有分叉,一定是分2叉,这棵树共有N个结点,编号为1-N,树根编号一定是1。 现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。给定需要保留的树枝数量,求出最多能留住多少苹果。

    【样例输入】

    5 2

    1 3 1

    1 4 10

    2 3 20

    3 5 20

    【样例输出】

    21


    【思路点拨】

    需要保留Q条树枝,即保留j=Q+1个结点。分三种情况讨论:

    ①全部保留右子树中的j-1个结点;//根结点必须保留

    ②全部保留左子树中的j-1个结点;

    ③左子树保留k个结点,则右子树保留j-k-1个结点。

    设树根为i,左儿子为l[i],右儿子为r[i],对于①情况,要取得该方案的最大值,需要取得以r[i]为根的子树保留j-1个结点的最大值。②③同理。

    f[i][j]:以i为根的树上保留j个节点的最大权值和。

    状态转移方程:

    初始化:

    目标:

     

     

  • 相关阅读:
    默认Web字体样式
    从Reddit学到的七条经验
    Git魔法 前言
    26个提升java性能需要注意的地方
    解密Redis持久化
    离开Java,寻找更佳语言的10大理由
    » DebBuilder V2.2.2 测试版发布 Wow! Ubuntu
    YaCy 1.0 发布,自由软件搜索引擎
    Socket 短连接、长连接_YTmarkit的空间_百度空间
    TopHQBooks – PDF 搜索引擎 小众软件
  • 原文地址:https://www.cnblogs.com/ljy-endl/p/11612275.html
Copyright © 2011-2022 走看看