zoukankan      html  css  js  c++  java
  • chapter1:using neural nets to recognize handwritten digits

    two important types of artificial neuron :the perceptron and the sigmoid neuron

    Perceptrons

    感知机的输入个数不限,每个输入的取值都是二元的(0或1,这点不确定,后续确认下),输出是0或1.

    Sigmoid neuron

    Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output. That's the crucial fact which will allow a network of sigmoid neurons to learn.

    sigmoid neuron 输入:these inputs can  take on any values between 0 and 1.

     

    sigmoid neuron与perceptrons的相似点:当z = w . x + b ->正无穷时,sigmoid neuron的输出趋向于1.当z = w . x + b ->负无穷时,sigmoid neuron的输出趋向于0.而感知机的输出就是0或1.

    The smoothness of σ (sigmoid函数值的平滑性) means that small changes  in the weights and in the bias will produce a small change in the output from the neuron.

    上面公式如何推导出来?

    后续的笔记直接写在纸上了

    The architecture of neural networks

    A simple network to classify handwritten digits

    Learning with gradient descent

    Implementing our network to classify digits

    Toward deep learning


  • 相关阅读:
    vue ssr
    webpack-dev-server proxy代理
    PHP连数据库生成数据字典
    redis.rpm 安装
    centos 6.5安装NodeJS
    Jenkins + git + maven 安装
    最新版本GIT安装
    身份证校验
    快递100物流公司列表
    redis 安装
  • 原文地址:https://www.cnblogs.com/ljygoodgoodstudydaydayup/p/6403232.html
Copyright © 2011-2022 走看看