zoukankan      html  css  js  c++  java
  • UOJ 30 【CF Round #278】Tourists

    Tourists

    UOJ 30

    1

    题目大意

    (n)(m) 条边的无向图,每个点有点权 (w_i)(q) 次询问,每次修改第 (a) 个点的点权为 (w) ,或者查询 (a)(b) 所有路径中,最小的点权

    数据范围

    (1 le n,m,q le 10^5, 1 le w_i le 10^9)

    时空限制

    2s,256MB

    分析

    对于这种在无向图上查询路径信息的题,一般利用圆方树将其转为树上问题

    对于一个方点,维护点双中最小的点权,但是如果这样,每修改一次就需要修改所有与它相邻的节点。

    对此我们有一个经典方法,对于方点维护除了环顶之外的信息,在圆方树中就相当于方点维护所有它儿子的信息,那么我们修改时只需要修改它的父亲,查询的时候如果 (lca) 为方点,那么还需要加上它的父亲的信息(因为父亲也在此点双中)

    Code

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <vector>
    #include <set>
    
    using namespace std;
    
    template<class T> void read(T & x)
    {
        x = 0; int f = 1, ch = getchar();
        while(ch < '0' || ch > '9')
        {
            if(ch == '-') f = -1;
            ch = getchar();
        }
        while(ch >= '0' && ch <= '9')
        {
            x = x * 10 - '0' + ch;
            ch = getchar();
        }
        x *= f;
    }
    
    #define lson u << 1, l, mid
    #define rson u << 1 | 1, mid + 1, r
    
    const int inf = 1000000000;
    
    const int maxn = 100000 + 5;
    const int maxm = 100000 + 5;
    const int maxe = maxm * 2;
    const int maxnode = maxn * 2;
    
    int n, m, q;
    int val[maxnode];
    
    struct edge
    {
        int to, nex;
        edge(int to = 0, int nex = 0) : to(to), nex(nex) {}
    } g[maxe];
    int head[maxn];
    int ecnt;
    vector<int> adj[maxnode];
    
    inline void addedge(int u, int v)
    {
        g[ecnt] = edge(v, head[u]), head[u] = ecnt++;
        g[ecnt] = edge(u, head[v]), head[v] = ecnt++;
    }
    inline void adde(int u, int v)
    {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    int dfc, dfn[maxn], low[maxn];
    int top, sta[maxn];
    int bcnt;
    multiset<int> bccval[maxn];
    
    void tarjan(int u, int fa)
    {
        dfn[u] = low[u] = ++dfc;
        sta[++top] = u;
        for(int i = head[u]; ~ i; i = g[i].nex)
        {
            int v = g[i].to;
            if(v != fa)
            {
                if(!dfn[v])
                {
                    tarjan(v, u);
                    low[u] = min(low[u], low[v]);
                    if(low[v] >= dfn[u])
                    {
                        int now = n + (++bcnt);
                        adde(now, u);
                        while(true)
                        {
                            int x = sta[top--];
                            bccval[bcnt].insert(val[x]);
                            adde(now, x);
                            if(x == v) break;
                        }
                        val[now] = * bccval[bcnt].begin();
                    }
                }
                else low[u] = min(low[u], dfn[v]);
            }
        }
    }
    
    struct segment_tree
    {
        int mn[maxnode << 2];
    
        inline void pushup(int u)
        {
            mn[u] = min(mn[u << 1], mn[u << 1 | 1]);
        }
        void build(int u, int l, int r)
        {
            if(l == r)
            {
                mn[u] = val[ver[l]];
                return;
            }
            int mid = (l + r) >> 1;
            build(lson), build(rson);
            pushup(u);
        }
        void update(int u, int l, int r, int qp)
        {
            if(l == r)
            {
                mn[u] = val[ver[l]];
                return;
            }
            int mid = (l + r) >> 1;
            if(qp <= mid) update(lson, qp);
            else update(rson, qp);
            pushup(u);
        }
        int query(int u, int l, int r, int ql, int qr)
        {
            if(l == ql && r == qr) return mn[u];
            int mid = (l + r) >> 1;
            if(qr <= mid) return query(lson, ql, qr);
            else if(ql > mid) return query(rson, ql, qr);
            else
            {
                int lv = query(lson, ql, mid);
                int rv = query(rson, mid + 1, qr);
                return min(lv, rv);
            }
        }
    
        int dep[maxnode], anc[maxnode], siz[maxnode], son[maxnode];
        int dfn[maxnode], top[maxnode], ver[maxnode], dfc;
    
        void dfs1(int u)
        {
            siz[u] = 1;
            for(unsigned int i = 0; i < adj[u].size(); ++i)
            {
                int v = adj[u][i];
                if(v != anc[u])
                {
                    dep[v] = dep[u] + 1;
                    anc[v] = u;
                    dfs1(v);
                    siz[u] += siz[v];
                    if(siz[son[u]] <= siz[v]) son[u] = v;
                }
            }
        }
        void dfs2(int u, int chain)
        {
            top[u] = chain;
            dfn[u] = ++dfc;
            ver[dfc] = u;
            if(son[u])
            {
                dfs2(son[u], chain);
            }
            for(unsigned int i = 0; i < adj[u].size(); ++i)
            {
                int v = adj[u][i];
                if(v != anc[u] && v != son[u])
                {
                    dfs2(v, v);
                }
            }
        }
        void init()
        {
            dfs1(1);
            dfs2(1, 1);
            build(1, 1, n + bcnt);
        }
    
        void update(int u, int x)
        {
            int v = anc[u];
            if(v) bccval[v - n].erase(bccval[v - n].find(val[u]));
            val[u] = x;
            if(v) bccval[v - n].insert(val[u]);
            if(v) val[v] = * bccval[v - n].begin();
            update(1, 1, n + bcnt, dfn[u]);
            if(v) update(1, 1, n + bcnt, dfn[v]);
        }
        int query(int u, int v)
        {
            int re = inf;
            while(top[u] != top[v])
            {
                if(dep[top[u]] > dep[top[v]]) swap(u, v);
                re = min(re, query(1, 1, n + bcnt, dfn[top[v]], dfn[v]));
                v = anc[top[v]];
            }
            if(dep[u] > dep[v]) swap(u, v);
            re = min(re, query(1, 1, n + bcnt, dfn[u], dfn[v]));
            if(u > n)
            {
                re = min(re, val[anc[u]]);
            }
            return re;
        }
    } seg;
    
    void init()
    {
        tarjan(1, 0);
        seg.init();
    }
    
    int main()
    {
        // freopen("testdata.in", "r", stdin);
        read(n), read(m), read(q);
        for(int i = 1; i <= n; ++i)
        {
            read(val[i]);
        }
        memset(head, -1, sizeof(head));
        for(int i = 1; i <= m; ++i)
        {
            int u, v; read(u), read(v);
            addedge(u, v);
        }
        init();
        for(int i = 1; i <= q; ++i)
        {
            char op[5]; scanf("%s", op);
            if(op[0] == 'C')
            {
                int a, w; read(a), read(w);
                seg.update(a, w);
            }
            else
            {
                int a, b; read(a), read(b);
                printf("%d
    ", seg.query(a, b));
            }
        }
        return 0;
    }
    
    
  • 相关阅读:
    Java程序开发必备的6种知识
    Java技术在多数据库系统中的应用研究
    解决J2EE系统应用性能问题常用方法
    在Java中如何跳出当前的多重嵌套循环?
    Java学习是由简入难的学习过程
    浅谈Java SE、Java EE、Java ME三者的区别
    J2ee的学习方法及步骤摘要
    IOS 使用GCD改善性能
    IOS Cell重用机制
    BUG--tomcat更改目录失败
  • 原文地址:https://www.cnblogs.com/ljzalc1022/p/10218456.html
Copyright © 2011-2022 走看看