[BJOI2017]开车
题目大意
给出 (n) 个车的位置 (a_i) 和 (n) 个加油站的位置 (b_i) ,一辆车从 (x) 位置到 (y) 位置的代价为 (|x - y|) ,问如何两两配对使答案最小,(q) 次询问每次修改 (a_x) 为 (y) ,每次修改后给出当前答案。
数据范围
(n le 50000, q le 50000)
时空限制
3000ms, 256MB, O2
反思
似乎根本没有任何思考就点开了题解
分析
首先发现答案实际上就是分别排序后对应配对,考虑维护数轴上每条边的贡献,发现我们记一个 (a_i) 为 (1) ,$b_i $ 为 (-1) 的前缀和,那么它的贡献就是 (|sum|)
那么我们修改就相当于区间 (pm 1) ,但是我们无法简单地维护一个绝对值,所以用分块的方法
将块内的前缀和排序,二分 (0) 点,带上标记即可修改
Code
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
inline char nc() {
static char buf[100000], *l = buf, *r = buf;
return l==r&&(r=(l=buf)+fread(buf,1,100000,stdin),l==r)?EOF:*l++;
}
template<class T> void read(T &x) {
x = 0; int f = 1, ch = nc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=nc();}
while(ch>='0'&&ch<='9'){x=x*10-'0'+ch;ch=nc();}
x *= f;
}
#define myabs(a) ((a) < 0 ? - (a) : (a))
typedef long long ll;
const int maxn = 50000 + 5;
const int maxq = 50000 + 5;
const int maxp = maxn * 2 + maxq;
const int maxb = 400;
int n, q, a[maxn], b[maxn]; ll an;
int H[maxp], p;
struct data {
int x, y;
} ask[maxq];
void Hash() {
sort(H + 1, H + p + 1);
p = unique(H + 1, H + p + 1) - H - 1;
for(int i = 1; i <= n; ++i) {
a[i] = lower_bound(H + 1, H + p + 1, a[i]) - H;
}
for(int i = 1; i <= n; ++i) {
b[i] = lower_bound(H + 1, H + p + 1, b[i]) - H;
}
for(int i = 1; i <= q; ++i) {
ask[i].y = lower_bound(H + 1, H + p + 1, ask[i].y) - H;
}
}
namespace blocks {
int len;
int L[maxb], R[maxb], bel[maxp];
int sum[maxp], val[maxp];
int sval[maxp], ord[maxp], tag[maxb];
inline int cmp(const int &a, const int &b) {
return sum[a] < sum[b];
}
void rebuild(int x) {
sort(ord + L[x], ord + R[x] + 1, cmp);
sval[L[x]] = val[ord[L[x]]];
for(int i = L[x] + 1; i <= R[x]; ++i) {
sval[i] = sval[i - 1] + val[ord[i]];
}
}
void init() {
for(int i = 1; i <= n; ++i) {
sum[a[i]]++, sum[b[i]]--;
}
for(int i = 1; i <= p; ++i) {
if(i < p) val[i] = H[i + 1] - H[i];
sum[i] += sum[i - 1];
an += (ll)myabs(sum[i]) * val[i];
}
len = ceil(sqrt(p));
for(int i = 1; i <= p; ++i) {
int x = bel[i] = (i - 1) / len + 1;
if(!L[x]) L[x] = i;
R[x] = i;
}
for(int i = 1; i <= p; ++i) ord[i] = i;
for(int i = 1; i <= bel[p]; ++i) {
rebuild(i);
}
}
void add(int x) {
for(int i = x; i <= R[bel[x]]; ++i) {
an += val[i] * (sum[i] + tag[bel[x]] >= 0 ? 1 : -1);
sum[i]++;
}
rebuild(bel[x]);
for(int i = bel[x] + 1; i <= bel[p]; ++i) {
int l = L[i], r = R[i], re = -1;
while(l <= r) {
int mid = (l + r) >> 1;
if(sum[ord[mid]] + tag[i] >= 0) r = mid - 1, re = mid;
else l = mid + 1;
}
if(re == -1) {
an -= sval[R[i]];
}
else if(re == L[i]) {
an += sval[R[i]];
}
else {
an -= sval[re - 1];
an += sval[R[i]] - sval[re - 1];
}
tag[i]++;
}
}
void sub(int x) {
for(int i = x; i <= R[bel[x]]; ++i) {
an += val[i] * (sum[i] + tag[bel[x]] <= 0 ? 1 : -1);
sum[i]--;
}
rebuild(bel[x]);
for(int i = bel[x] + 1; i <= bel[p]; ++i) {
int l = L[i], r = R[i], re = -1;
while(l <= r) {
int mid = (l + r) >> 1;
if(sum[ord[mid]] + tag[i] <= 0) l = mid + 1, re = mid;
else r = mid - 1;
}
if(re == -1) {
an -= sval[R[i]];
}
else if(re == R[i]) {
an += sval[R[i]];
}
else {
an += sval[re];
an -= sval[R[i]] - sval[re];
}
tag[i]--;
}
}
}
int main() {
// freopen("testdata.in", "r", stdin);
// freopen("testdata.out", "w", stdout);
read(n);
for(int i = 1; i <= n; ++i) {
read(a[i]), H[++p] = a[i];
}
for(int i = 1; i <= n; ++i) {
read(b[i]), H[++p] = b[i];
}
read(q);
for(int i = 1; i <= q; ++i) {
read(ask[i].x), read(ask[i].y);
H[++p] = ask[i].y;
}
Hash();
blocks :: init();
printf("%lld
", an);
for(int i = 1; i <= q; ++i) {
int x = ask[i].x, y = ask[i].y;
blocks :: sub(a[x]);
blocks :: add(a[x] = y);
printf("%lld
", an);
}
return 0;
}
总结
利用分块维护绝对值