zoukankan      html  css  js  c++  java
  • Linux驱动学习(三)

    注:基于Linux-2.6.38

           上一篇说了平台设备是怎么注册进内核的,这一篇要说平台驱动(platform driver)的注册过程,看看当平台驱动注册进内核时是怎么与平台设备“联系”起来的。知道这些之后,以后想移植到新的内核或者添加其他平台设备(如SPI,IIC设备)或者编写平台设备驱动(如SPI,IIC驱动)就知道该怎么下手了。

           这里以s3c处理器的framebuffer驱动为例进行说明(其他的平台驱动原理一样)。找到/drivers/video/samsung/s3cfb.c,首先看模块的初始化函数:

    1 int __devinit s3cfb_init(void)
    2 {
    3         return platform_driver_register(&s3cfb_driver);
    4 }

    第3行调用platform_driver_register(),参数s3cfb_driver的类型为struct platform_driver,看看它的定义:

     1 static struct platform_driver s3cfb_driver = {
     2         .probe          = s3cfb_probe,
     3         .remove         = s3cfb_remove,
     4         .suspend        = s3cfb_suspend,
     5         .resume         = s3cfb_resume,
     6         .driver         = {
     7                 .name   = "s3c-fb",
     8                 .owner  = THIS_MODULE,
     9         },
    10 };

    第2~5行给一些函数指针赋值,记住第7行这个name成员的值,后面会再提到;下面看platform_driver_register()在drivers/base/platform.c里的定义:

     1 int platform_driver_register(struct platform_driver *drv)
     2 {       
     3         drv->driver.bus = &platform_bus_type;
     4         if (drv->probe)
     5                 drv->driver.probe = platform_drv_probe;
     6         if (drv->remove)
     7                 drv->driver.remove = platform_drv_remove;
     8         if (drv->shutdown)
     9                 drv->driver.shutdown = platform_drv_shutdown;
    10 
    11         return driver_register(&drv->driver);
    12 }

    第3行,设置当前驱动所在的总线,从这里可以看出,平台设备和平台驱动处在同一条总线上;第4~9行,也是一些函数指针赋值操作;关键看第11行调用的在drivers/base/driver.c里定义的driver_register():

     1 int driver_register(struct device_driver *drv)
     2 {
     3         int ret;
     4         struct device_driver *other;
     5 
     6         BUG_ON(!drv->bus->p);
     7         
     8         if ((drv->bus->probe && drv->probe) ||
     9             (drv->bus->remove && drv->remove) ||
    10             (drv->bus->shutdown && drv->shutdown))
    11                 printk(KERN_WARNING "Driver '%s' needs updating - please use "
    12                         "bus_type methods\n", drv->name);
    13                 
    14         other = driver_find(drv->name, drv->bus);
    15         if (other) {
    16                 put_driver(other);
    17                 printk(KERN_ERR "Error: Driver '%s' is already registered, "
    18                         "aborting...\n", drv->name);
    19                 return -EBUSY;
    20         }
    21 
    22         ret = bus_add_driver(drv);
    23         if (ret)
    24                 return ret;
    25         ret = driver_add_groups(drv, drv->groups);
    26         if (ret)
    27                 bus_remove_driver(drv);
    28         return ret;
    29 }

    看第14行的driver_find():

     1 struct device_driver *driver_find(const char *name, struct bus_type *bus)
     2 {
     3         struct kobject *k = kset_find_obj(bus->p->drivers_kset, name);
     4         struct driver_private *priv;
     5 
     6         if (k) {
     7                 priv = to_driver(k);
     8                 return priv->driver;
     9         }
    10         return NULL;
    11 }

    通过函数的2个参数就可以知道,意思就是在bus总线上通过name找到它所对应的驱动。其实这里是不会找得到的,如果能找到就说明当前驱动之前已经注册过,就会返回出错信息。

    回到driver_register()第22行的bus_add_driver(),这个函数有点长,只给出关键部分:

    1 int bus_add_driver(struct device_driver *drv)
    2 {
    3 ...........................................
    4         if (drv->bus->p->drivers_autoprobe) {
    5                 error = driver_attach(drv);
    6                 if (error)
    7                         goto out_unregister;
    8         }
    9 .......................................

    第4行的if条件一般会成立,因此看第5行的driver_attach():

    1 int driver_attach(struct device_driver *drv)
    2 {       
    3         return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
    4 }

    遍历总线上每一个已经注册了的设备,每找到一个就调用__driver_attach()来判断是否与当前驱动匹配(怎么样才算匹配?答案即将揭晓),因此有必要看看__driver_attach()的定义:

     1 static int __driver_attach(struct device *dev, void *data)
     2 {
     3         struct device_driver *drv = data;
     4 
     5         /*
     6          * Lock device and try to bind to it. We drop the error
     7          * here and always return 0, because we need to keep trying
     8          * to bind to devices and some drivers will return an error
     9          * simply if it didn't support the device.
    10          *
    11          * driver_probe_device() will spit a warning if there
    12          * is an error.
    13          */
    14 
    15         if (!driver_match_device(drv, dev))
    16                 return 0;
    17 
    18         if (dev->parent)        /* Needed for USB */
    19                 device_lock(dev->parent);
    20         device_lock(dev);
    21         if (!dev->driver)
    22                 driver_probe_device(drv, dev);
    23         device_unlock(dev);
    24         if (dev->parent)
    25                 device_unlock(dev->parent);
    26 
    27         return 0;
    28 }

    如果第15行的driver_match_device()返回0的话后面的都不用执行了,看看它的定义:

    1 static inline int driver_match_device(struct device_driver *drv,
    2                                       struct device *dev)
    3 {
    4         return drv->bus->match ? drv->bus->match(dev, drv) : 1;
    5 }

    第4行,如果drv->bus->match这个函数有定义,就调用drv->bus->match函数,否则返回1。在这里可以告诉你,drv->bus->match是有定义的,不信?那去看看。

    1 struct bus_type platform_bus_type = {
    2         .name           = "platform",
    3         .dev_attrs      = platform_dev_attrs,
    4         .match          = platform_match,
    5         .uevent         = platform_uevent,
    6         .pm             = &platform_dev_pm_ops,
    7 };

    是吧,再去看看match函数:

     1 static int platform_match(struct device *dev, struct device_driver *drv)
     2 {
     3         struct platform_device *pdev = to_platform_device(dev);
     4         struct platform_driver *pdrv = to_platform_driver(drv);
     5 
     6         /* Attempt an OF style match first */
     7         if (of_driver_match_device(dev, drv))
     8                 return 1;
     9 
    10         /* Then try to match against the id table */
    11         if (pdrv->id_table)
    12                 return platform_match_id(pdrv->id_table, pdev) != NULL;
    13 
    14         /* fall-back to driver name match */
    15         //
    16         return (strcmp(pdev->name, drv->name) == 0);
    17 }

    第8行和第12行,这两条返回语句对于当前来说都不会被执行,因此重点在第16行,drv->name的值在本篇的最前面可以看到是"s3c-fb",接下来看pdev->name的值:

    1 struct platform_device s3c_device_fb = {
    2     .name          = "s3c-fb",
    3     .id          = -1,
    4     .num_resources      = ARRAY_SIZE(s3c_fb_resource),
    5     .resource      = s3c_fb_resource,
    6     .dev.dma_mask      = &s3c_device_fb.dev.coherent_dma_mask,
    7     .dev.coherent_dma_mask = 0xffffffffUL,
    8 };

    第2行,看到了吧,也是"s3c-fb",事实上在这里看来这两个值一定要相同,驱动靠它来找到对应的设备。

    好了,回到__driver_attach()第18行以后的内容,其中第22行的driver_probe_device()会被执行,看它的定义:

     1 int driver_probe_device(struct device_driver *drv, struct device *dev)
     2 {
     3         int ret = 0;
     4 
     5         if (!device_is_registered(dev))
     6                 return -ENODEV;
     7 
     8         pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
     9                  drv->bus->name, __func__, dev_name(dev), drv->name);
    10 
    11         pm_runtime_get_noresume(dev);
    12         pm_runtime_barrier(dev);
    13         ret = really_probe(dev, drv);
    14         pm_runtime_put_sync(dev);
    15 
    16         return ret;
    17 }

    关键在第13行,really_probe()实现了真正的探测:

     1 static int really_probe(struct device *dev, struct device_driver *drv)
     2 {
     3         int ret = 0;
     4 
     5         atomic_inc(&probe_count);
     6         pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
     7                  drv->bus->name, __func__, drv->name, dev_name(dev));
     8         WARN_ON(!list_empty(&dev->devres_head));
     9 
    10         dev->driver = drv;
    11         if (driver_sysfs_add(dev)) {
    12                 printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
    13                         __func__, dev_name(dev));
    14                 goto probe_failed;
    15         }
    16 
    17         
    18         if (dev->bus->probe) {
    19                 ret = dev->bus->probe(dev);
    20                 if (ret)
    21                         goto probe_failed;
    22         } else if (drv->probe) {
    23                 ret = drv->probe(dev);
    24                 if (ret)
    25                         goto probe_failed;
    26         }
    27 ...................................

    第10行,把驱动和设备对应起来;第18~26行,意思很明显,从目前来看,第18行的条件不成立而第22行的条件会成立,因此会执行驱动里定义的probe()函数,在这里已经知道了驱动程序里的probe()是什么时候被调用的,后面那些内容是“收尾”工作了。

    到这里已经找到了我想要的东西了,也就告一段落了。

  • 相关阅读:
    Linux部署springboot项目创建守护进程
    实现数据库安全性控制的方法和主要技术。
    推荐一些学习MySQL的资源
    带你解析MySQL binlog
    一文解决MySQL时区相关问题
    手把手教你看MySQL官方文档
    MySQL关于日期为零值的处理
    关于日期及时间字段的查询
    是时候学习Linux了
    MySQL分区表最佳实践
  • 原文地址:https://www.cnblogs.com/lknlfy/p/2490360.html
Copyright © 2011-2022 走看看