zoukankan      html  css  js  c++  java
  • Til the Cows Come Home

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

     

    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.

    题目的意思是求解从路标N到路标1的最短路径,简单的最短路径题目。

    题目有一个坑:输入有重边,所以要选择最小的长度。

    #include<string.h>
    #include<stdio.h>
    #include<math.h>
    #define typec int
    const int MAXN=1010;
    const typec INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
    bool vis[MAXN];
    int pre[MAXN];
    typec cost[MAXN][MAXN];
    typec l[MAXN];
    void D(int n,int beg)
    {
        for(int i=1;i<=n;i++)
        {
            l[i]=INF;vis[i]=false;pre[i]=-1;
        }
        l[beg]=0;
        for(int j=1;j<=n;j++)
        {
            int k=-1;
            int Min=INF;
            for(int i=1;i<=n;i++)
                if(!vis[i]&&l[i]<Min)
                {
                    Min=l[i];
                    k=i;
                }
            if(k==-1)break;
            vis[k]=true;
            for(int i=1;i<=n;i++)
                if(!vis[i]&&l[k]+cost[k][i]<l[i])
                {
                    l[i]=l[k]+cost[k][i];
                    pre[i]=k;
                }
        }
    }
    
    int main()
    {
        int n,i,j,t,a,b,c;
        while(scanf("%d%d",&t,&n)!=EOF)
        {
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    cost[i][j]=(i==j)? 0:INF;
    
            for(i=0;i<t;i++)
            {
                scanf("%d%d%d",&a,&b,&c);
                if(cost[a][b]>c)
                    cost[a][b]=cost[b][a]=c;
            }
            D(n,n);
            printf("%d
    ",l[1]);
        }
        return 0;
    }
    

      

  • 相关阅读:
    网易编程题——小易喜欢的单词
    Effective C++ 条款12:复制对象时勿忘其每一个成分
    Effective C++ 条款11:在operator=中处理"自我赋值"
    STM32-通用定时器基本定时功能
    GPIO_Mode
    STM32的ADC编程方法
    STM32的ADC采样与多通道ADC采样
    网络子系统
    linux网络子系统内核分析
    Linux 中高效编写 Bash 脚本的 10 个技巧
  • 原文地址:https://www.cnblogs.com/llfj/p/5714223.html
Copyright © 2011-2022 走看看