zoukankan      html  css  js  c++  java
  • Project Euler:Problem 33 Digit cancelling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s.

    We shall consider fractions like, 30/50 = 3/5, to be trivial examples.

    There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.

    If the product of these four fractions is given in its lowest common terms, find the value of the denominator.



    #include <iostream>
    using namespace std;
    
    int gcd(int a, int b)
    {
    	while (b)
    	{
    		if (a < b)
    		{
    			int tmp = b;
    			b = a;
    			a = tmp;
    		}
    		int t = b;
    		b = a % b;
    		a = t;
    	}
    	return a;
    }
    
    int main()
    {
    	int fz = 1;
    	int fm = 1;
    	int res;
    	for (int x = 10; x <= 98; x++)
    	{
    		for (int y = x + 1; y <= 99; y++)
    		{
    			int a = x / 10;
    			int b = x % 10;
    			int c = y / 10;
    			int d = y % 10;
    			if ((b - c) == 0 && (y*a == x*d) && (d != 0))
    			{
    				fz *= a;
    				fm *= d;
    			}
    		}
    	}
    	res = fm / gcd(fz, fm);
    	cout << res << endl;
    	system("pause");
    	return 0;
    }
    


  • 相关阅读:
    译:DOM2中的高级事件处理(转)
    Cookbook of QUnit
    URI编码解码和base64
    css截断长文本显示
    内置对象,原生对象和宿主对象
    HTML中的meta(转载)
    iframe编程的一些问题
    自动补全搜索实现
    new的探究
    深入instanceof
  • 原文地址:https://www.cnblogs.com/llguanli/p/6936387.html
Copyright © 2011-2022 走看看