zoukankan      html  css  js  c++  java
  • HDU 5387 Clock(分数类+模拟)

    题意:

    给你一个格式为hh:mm:ss的时间,问:该时间时针与分针、时针与秒针、分针与秒针之间夹角的度数是多少。
    若夹角度数不是整数,则输出最简分数形式A/B,即A与B互质。

    解析:

    先计算出总的秒数 S=hh3600+mm60+ss

    1. 由于秒钟每秒走1°,
      所以当前时间,秒钟与12点的度数为 S%360

    2. 由于分针每秒走 0.1°,
      既然已经计算出总秒数,那么当前时间,分针与12点的度数为 S/10%360

    3. 由于时针每秒走(1/120)°。那么当前时间。时针与12点的度数为 S/120%360

    然后计算出几个角度之间的绝对值。
    又由于题目要求的是劣角,所以推断一下当前求出的角度的绝对值是否大于180°。
    假设大于180°,就把当前角度减去180°。

    注意:

    每行末尾另一个空格,没有输出会PE。

    my code

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef __int64 type;
    
    struct Frac {
    
        type a, b;
    
        Frac() {a = 0; b = 1;}
        Frac(type a) {this->a = a; b = 1; }
        Frac(type a, type b) {this->a = a; this->b = b; deal();}
    
        void init() {a = 0; b = 1;}
    
        type gcd(type a, type b) {
            while (b) {
                type tmp = a % b;
                a = b;
                b = tmp;
            }
            return a;
        }
    
        void deal() {
            type d = gcd(a, b);
            a /= d; b /= d;
            if (b < 0) {
                a = -a;
                b = -b;
            }
        }
    
        Frac operator + (Frac c) {
            Frac ans;
            ans.a = a * c.b + b * c.a;
            ans.b = b * c.b;
            ans.deal();
            return ans;
        }
    
        Frac operator - (Frac c) {
            Frac ans;
            ans.a = a * c.b - b * c.a;
            ans.b = b * c.b;
            ans.deal();
            return ans;
        }
    
        Frac operator * (Frac c) {
            Frac ans;
            ans.a = a * c.a;
            ans.b = b * c.b;
            ans.deal();
            return ans;
        }
    
        Frac operator / (Frac c) {
            Frac ans;
            ans.a = a * c.b;
            ans.b = b * c.a;
            ans.deal();
            return ans;
        }
    
        Frac operator % (Frac c) {
            Frac ans;
            ans.b = b * c.b;
            ans.a = a * c.b % (c.a * b);
            ans.deal();
            return ans;
        }
    
        void absolute() {
            if (a < 0) a = -a;
            if (b < 0) b = -b;
        }
    
        void operator += (Frac c) {*this = *this + c;}
        void operator -= (Frac c) {*this = *this - c;}
        void operator *= (Frac c) {*this = *this * c;}
        void operator /= (Frac c) {*this = *this / c;}
    
        bool operator > (Frac c) {return a * c.b > b * c.a;}
        bool operator == (Frac c) { return a * c.b == b * c.a;}
        bool operator < (Frac c) {return !(*this < c && *this == c);}
        bool operator >= (Frac c) {return !(*this < c);}
        bool operator <= (Frac c) {return !(*this > c);}
        bool operator != (Frac c) {return !(*this == c);}
        bool operator != (type c) {return *this != Frac(c, 1);}
    
        void operator = (type c) {this->a = c; this->b = 1;}
    
        void put() {
            if (a == 0) printf("0");
            else {
                if (b == 1) printf("%I64d", a);
                else printf("%I64d/%I64d", a, b);
            }
        }
    };
    
    int t;
    type hh, mm, ss;
    
    int main() {
        scanf("%d", &t);
        while (t--) {
            scanf("%I64d:%I64d:%I64d", &hh, &mm, &ss);
            type S = hh * 3600 + mm * 60 + ss;
            Frac s = Frac((S * 6) % 360);
            Frac m = Frac(S, 10);
            Frac h = Frac(S, 120);
    
            m = m % Frac(360);
            h = h % Frac(360);
    
            Frac a1 = (h - m);
            Frac a2 = (h - s);
            Frac a3 = (m - s);
    
            a1.absolute(); a2.absolute(); a3.absolute();
            if (a1 > Frac(180)) a1 = Frac(360) - a1;
            if (a2 > Frac(180)) a2 = Frac(360) - a2;
            if (a3 > Frac(180)) a3 = Frac(360) - a3;
    
            a1.put(); printf(" ");
            a2.put(); printf(" ");
            a3.put(); printf(" 
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    MySQL-DQL查询语句的其他方法查询
    MySQL-SQL的分类以及基本的操作
    1-1-4-2 Java se-常量&变量-作用域
    1-1-4-1 java se-常量&变量-基本数据类型
    1-1-2-1 java se-helloworld原理—java代码的编译和运行逻辑
    1-1-1-2 Java se-java运行环境-jvm虚拟机的跨平台性以及和jdk,jre之间的关系
    1-1-1-1 java se-java运行环境-基本单位bit和Byte
    递归
    Ultra-QuickSort (POJ 2299)树状数组+离散化
    Color the ball(HDU1556)树状数组
  • 原文地址:https://www.cnblogs.com/llguanli/p/7258196.html
Copyright © 2011-2022 走看看