zoukankan      html  css  js  c++  java
  • Stanford机器学习笔记-5.神经网络Neural Networks (part two)

    5 Neural Networks (part two)

    content:

      5 Neural Networks (part two)

        5.1 cost function

        5.2 Back Propagation

        5.3 神经网络总结

    接上一篇4. Neural Networks (part one). 本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结。

    5.1 cost function

    (注:正则化相关内容参见3.Bayesian statistics and Regularization)

    5.2 Back Propagation

    (详细推导过程参见反向传播算法,以及李宏毅的机器学习课程:youtube,B站)。

    图5-1 BP算法步骤

    在实现反向传播算法时,有如下几个需要注意的地方。

    1. 需要对所有的连接权重(包括偏移单元)初始化为接近0但不全等于0的随机数。如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数(也就是说,所有神经元的激活值都会取相同的值,对于任何输入x 都会有:  )。随机初始化的目的是使对称失效。具体地,我们可以如图5-2一样随机初始化。(matlab实现见后文代码1)
    2. 如果实现的BP算法计算出的梯度(偏导数)是错误的,那么用该模型来预测新的值肯定是不科学的。所以,我们应该在应用之前就判断BP算法是否正确。具体的,可以通过数值的方法(如图5-3所示的)计算出较精确的偏导,然后再和BP算法计算出来的进行比较,若两者相差在正常的误差范围内,则BP算法计算出的应该是比较正确的,否则说明算法实现有误。注意在检查完后,在真正训练模型时不应该再运行数值计算偏导的方法,否则将会运行很慢。(matlab实现见后文代码2)
    3. 用matlab实现时要注意matlab的函数参数不能为矩阵,而连接权重为矩阵,所以在传递初始化连接权重前先将其向量化,再用reshape函数恢复。(见后文代码3)

    图5-2 随机初始化连接权重

    图5-3 数值方法求代价函数偏导的近似值

    5.3 神经网络总结

    第一步,设计神经网络结构。

    隐藏层单元个数通常都是不确定的。

    一般选取神经网络隐藏层单元个数的几个经验公式如下:

    参考https://www.zhihu.com/question/46530834

    此外,MNIST手写数字识别中给出了以不同的神经网络结构训练的结果,供参考

    第二步,实现正向传播(FP)和反向传播算法,这一步包括如下的子步骤。

    第三步,用数值方法检查求偏导的正确性

    第四步,用梯度下降法或更先进的优化算法求使得代价函数最小的连接权重

    在第四步中,由于代价函数是非凸(non-convex)函数,所以在优化过程中可能陷入局部最优值,但不一定比全局最优差很多(如图5-4),在实际应用中通常不是大问题。也会有一些启发式的算法(如模拟退火算法遗传算法等)来帮助跳出局部最优。

    图5-4 陷入局部最优(不一定比全局最优差很多)

     

    代码1:随机初始化连接权重

    function W = randInitializeWeights(L_in, L_out)
    %RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
    %incoming connections and L_out outgoing connections
    %   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
    %   of a layer with L_in incoming connections and L_out outgoing 
    %   connections. 
    %
    %   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
    %   the column row of W handles the "bias" terms
    %
    
    W = zeros(L_out, 1 + L_in);
    
    
    % Instructions: Initialize W randomly so that we break the symmetry while
    %               training the neural network.
    %
    % Note: The first row of W corresponds to the parameters for the bias units
    %
    
    epsilon_init = sqrt(6) / (sqrt(L_out+L_in));
    W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;
    
    end
    View Code

    代码2:用数值方法求代价函数对连接权重偏导的近似值

    function numgrad = computeNumericalGradient(J, theta)
    %COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
    %and gives us a numerical estimate of the gradient.
    %   numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
    %   gradient of the function J around theta. Calling y = J(theta) should
    %   return the function value at theta.
    
    % Notes: The following code implements numerical gradient checking, and 
    %        returns the numerical gradient.It sets numgrad(i) to (a numerical 
    %        approximation of) the partial derivative of J with respect to the 
    %        i-th input argument, evaluated at theta. (i.e., numgrad(i) should 
    %        be the (approximately) the partial derivative of J with respect 
    %        to theta(i).)
    %                
    
    numgrad = zeros(size(theta));
    perturb = zeros(size(theta));
    e = 1e-4;
    for p = 1:numel(theta)
        % Set perturbation vector
        perturb(p) = e;
        % Compute Numerical Gradient
        numgrad(p) = ( J(theta + perturb) - J(theta - perturb)) / (2*e);
        perturb(p) = 0;
    end
    end
    View Code

    代码3:应用FP和BP算法实现计算隐藏层为1层的神经网络的代价函数以及其对连接权重的偏导数

    function [J grad] = nnCostFunction(nn_params, ...
                                       input_layer_size, ...
                                       hidden_layer_size, ...
                                       num_labels, ...
                                       X, y, lambda)
    %NNCOSTFUNCTION Implements the neural network cost function for a two layer
    %neural network which performs classification
    %   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
    %   X, y, lambda) computes the cost and gradient of the neural network. The
    %   parameters for the neural network are "unrolled" into the vector
    %   nn_params and need to be converted back into the weight matrices. 
    % 
    %   The returned parameter grad should be a "unrolled" vector of the
    %   partial derivatives of the neural network.
    %
    
    % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
    % for our 2 layer neural network:Theta1: 1->2; Theta2: 2->3 
    Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                     hidden_layer_size, (input_layer_size + 1));
               
    Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                     num_labels, (hidden_layer_size + 1));
    
    % Setup some useful variables
    m = size(X, 1);
    J = 0;
    Theta1_grad = zeros(size(Theta1));  
    Theta2_grad = zeros(size(Theta2));
    
    %         Note: The vector y passed into the function is a vector of labels
    %               containing values from 1..K. You need to map this vector into a 
    %               binary vector of 1's and 0's to be used with the neural network
    %               cost function.
    
    for i = 1:m
        % compute activation by Forward Propagation
        a1 = [1; X(i,:)'];
        z2 = Theta1 * a1;
        a2 = [1; sigmoid(z2)];
        z3 = Theta2 * a2;
        h = sigmoid(z3);
        
        yy = zeros(num_labels,1);
        yy(y(i)) = 1;              % 训练集的真实值yy
       
        J = J + sum(-yy .* log(h) - (1-yy) .* log(1-h));
        
        % Back Propagation 
        delta3 = h - yy;
        delta2 = (Theta2(:,2:end)' * delta3) .* sigmoidGradient(z2); %注意要除去偏移单元的连接权重
        
        Theta2_grad = Theta2_grad + delta3 * a2';   
        Theta1_grad = Theta1_grad + delta2 * a1';
    end
    
    J = J / m + lambda * (sum(sum(Theta1(:,2:end) .^ 2)) + sum(sum(Theta2(:,2:end) .^ 2))) / (2*m);
    
    Theta2_grad = Theta2_grad / m;
    Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + lambda * Theta2(:,2:end) / m; % regularized nn
    
    Theta1_grad = Theta1_grad / m;
    Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + lambda * Theta1(:,2:end) / m; % regularized nn
    
    % Unroll gradients
    grad = [Theta1_grad(:) ; Theta2_grad(:)];
    
    end
    View Code
  • 相关阅读:
    LDAP服务器的概念和原理简单介绍
    LDAP概念和原理介绍
    @ENABLEWEBSECURITY和@ENABLEWEBMVCSECURITY有什么区别?
    解决:javac: 无效的目标发行版: 1.8
    win10下,cmd,power shell设置默认编码为‘UTF-8’?
    windows 控制台cmd乱码(及永久修改编码)的解决办法
    学而不思则罔,思而不学则殆(读书要思考,灵活运用。考虑问题的时候,不要陷入空想,要去看书学一下才有用)(孔子亲测:吾尝终日不食,终夜不寝,以思,无益,不如学也),死记硬背不行,光自己琢磨不看书也不行
    【需求采集】用户访谈的注意点
    C++中回调(CallBack)的使用方法(其实就是类方法指针,我觉得你的方法易用性不好,虽然原理正确)
    arm cpu的架构及分类说明
  • 原文地址:https://www.cnblogs.com/llhthinker/p/5356174.html
Copyright © 2011-2022 走看看