zoukankan      html  css  js  c++  java
  • POJ 2387 Til the Cows Come Home 【最短路SPFA】

    Til the Cows Come Home 

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1.

    题解

    最短路 之前是用的dijkstra,换用spfa写写

    代码

    #include<iostream>
    #include<cstdio>     //EOF,NULL
    #include<cstring>    //memset
    #include<cstdlib>    //rand,srand,system,itoa(int),atoi(char[]),atof(),malloc
    #include<cmath>           //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
    #include<algorithm>  //fill,reverse,next_permutation,__gcd,
    #include<string>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<utility>
    #include<iterator>
    #include<iomanip>             //setw(set_min_width),setfill(char),setprecision(n),fixed,
    #include<functional>
    #include<map>
    #include<set>
    #include<limits.h>     //INT_MAX
    #include<bitset> // bitset<?> n
    using namespace std;
    
    typedef long long LL;
    typedef long long ll;
    typedef pair<int,int> P;
    #define all(x) x.begin(),x.end()
    #define readc(x) scanf("%c",&x)
    #define read(x) scanf("%d",&x)
    #define read2(x,y) scanf("%d%d",&x,&y)
    #define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
    #define print(x) printf("%d
    ",x)
    #define mst(a,b) memset(a,b,sizeof(a))
    #define lowbit(x) x&-x
    #define lson(x) x<<1
    #define rson(x) x<<1|1
    #define pb push_back
    #define mp make_pair
    const int inf = 0x3f3f3f3f;
    const int INF = 0x3f3f3f3f;
    const int mod = 1e9+7;
    const int MAXN = 505 ;
    const int maxn = 2000+10;
    int a[maxn][maxn],dis[maxn];
    int vis[maxn];
    
    void SPFA(int n)
    {
        queue<int> q;
        for(int i = 2;i <= n; i++){
            dis[i] = INF;
            vis[i] = 0;
        }
        dis[1] = 0;
        vis[1] = 1;
        q.push(1) ;
        while(!q.empty())
        {
            int k = q.front();
            q.pop();
            vis[k] = 0;
            for(int j = 1;j <= n; j++)
                if(dis[j] > dis[k] + a[k][j])
                {
                    dis[j] = dis[k] + a[k][j];
                    if(!vis[j])
                    {
                        q.push(j);
                        vis[j] = 1;
                    }
                }
        }
    }
    int main()
    {
        int m,n,w;
        int x,y;
        while(read2(m,n) != EOF)
        {
          for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
              if(i == j) a[i][j] = 0;
              else  a[i][j] = a[j][i] =  inf;
          while(m--)
          {
            read3(x,y,w);
            if(w < a[x][y])
                a[x][y] = a[y][x] = w;
          }
          SPFA(n);
          print(dis[n]);
      }
        return 0;
    }
     
  • 相关阅读:
    Nancy学习
    微信公众号开发开发问题记-code been used
    C#——委托、Lambda表达式、闭包和内存泄漏
    【协作式原创】查漏补缺之Go的slice基础和几个难点
    【协作式原创】自己动手写docker之run代码解析
    【算法】剑指第二版3.数组中重复数字
    剑指offer第二版速查表
    【协作式原创】查漏补缺之乐观锁与悲观锁TODO
    【协作式原创】查漏补缺之Go并发问题(单核多核)
    【协作式原创】查漏补缺之Golang中mutex源码实现(预备知识)
  • 原文地址:https://www.cnblogs.com/llke/p/10780115.html
Copyright © 2011-2022 走看看