zoukankan      html  css  js  c++  java
  • [组合数学]Many Many Paths

    题意

    给定(r1,c1,r2,c2),求(sum^{r2}_{i=r1}{sum^{c2}_{j=c1}{f(i,j)}}),其中(f(i,j))表示从((0,0))往上或往右走到((i,j))的方案数

    题解

    (g(r,c)=sum^{r}_{i=0}{sum^{c}_{j=0}{f(i,j)}})
    (sum^{r2}_{i=r1}{sum^{c2}_{j=c1}{f(i,j)}}=g(r2,c2)-g(r1-1,c2)-g(r2,c1-1)+g(r1-1,c1-1))
    (f(i,j)={i+j choose j})(显然)
    (g(r,c)=sum^{r}_{i=0}{sum^{c}_{j=0}{f(i,j)}}=sum^{r}_{i=0}{sum^{c}_{j=0}{{i+j choose j}}})
    (sum^{c}_{j=0}{{i+j choose j}}={i+c+1 choose c})(这是一个公式)
    (g(r,c)=sum^{r}_{i=0}{sum^{c}_{j=0}{f(i,j)}}=sum^{r}_{i=0}{sum^{c}_{j=0}{{i+j choose j}}}=sum^{r}_{i=0}{{i+c+1 choose c}})
    因此(g(r,c))可以在(O(n))时间内求出

    代码

    #include<bits/stdc++.h>
    #pragma GCC optimize(2)
    #pragma GCC optimize(3,"Ofast","inline")
    using namespace std;
    typedef long long ll;
    const ll mod=1e9+7;
    
    ll f[2000010],invf[2000010];
    
    ll qpow(ll a,ll b){
      ll ret=1;
      while(b){
        if(b&1) ret=ret*a%mod;
        a=a*a%mod;
        b>>=1;
      }
      return ret;
    }
    
    void init(ll n=2000005){
      f[0]=1;
      for(ll i=1;i<=n;i++) f[i]=f[i-1]*i%mod;
      invf[n]=qpow(f[n],mod-2);
      for(ll i=n-1;i>=0;i--) invf[i]=invf[i+1]*(i+1)%mod;
    }
    
    ll C(ll n,ll m){//O(1)
      if(m>n||m<0) return 0; if(m==n||m==0) return 1;
      return f[n]*invf[m]%mod*invf[n-m]%mod;
    }
    
    ll g(ll r,ll c){
      ll ret=0;
      for(ll i=0;i<=r;i++){
        ret=(ret+C(i+c+1,c))%mod;
      }
      return ret;
    }
    
    int main()
    {
        init();
        ll r1,c1,r2,c2;scanf("%lld%lld%lld%lld",&r1,&c1,&r2,&c2);
        ll ans=(((g(r2,c2)-g(r1-1,c2))%mod-g(r2,c1-1))%mod+g(r1-1,c1-1))%mod;
        ans=(ans+mod)%mod;
        printf("%lld
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    tkinter TEXT
    tkinter
    threading.Event
    lambda demo
    Tomcat性能调优
    Tomcat优化
    BeautifulSoup库的使用
    正则的基本使用
    Urllib库的基本使用
    初识爬虫
  • 原文地址:https://www.cnblogs.com/lllxq/p/12354597.html
Copyright © 2011-2022 走看看