Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2
1 2 5 6
2 3 4 5
1 3
0 0
Sample Output
9 11
思路:裸的dijkstra
AC代码:
#include <iostream> #include<cstdio> #include<cstring> #include<vector> #include<queue> typedef long long ll; using namespace std; ll n,m,s,t; struct Edge{ll v,len,cost;}; vector<Edge> edge[1010]; struct Node{ll v,dis,tot;}; bool operator <(Node a,Node b){return a.dis>b.dis;} ll ans1[1010],ans2[1010]; void dijkstra(){ memset(ans1,0x3f,sizeof(ans1)); memset(ans2,0x3f,sizeof(ans2)); priority_queue<Node> q;q.push(Node{s,0,0}); while(!q.empty()){ Node now=q.top();q.pop(); ll u=now.v,dis=now.dis,tot=now.tot; if(dis>ans1[u]||(dis==ans1[u]&&tot>ans2[u])) continue; ans1[u]=dis,ans2[u]=tot; for(ll i=0;i<(ll)edge[u].size();i++){ ll v=edge[u][i].v,len=edge[u][i].len,cost=edge[u][i].cost; if(dis+len<ans1[v]||(dis+len==ans1[v]&&tot+cost<ans2[v])) q.push(Node{v,dis+len,tot+cost}); } } } int main() { while(scanf("%lld%lld",&n,&m)!=EOF&&(n+m)){ for(ll i=1;i<=n;i++) edge[i].clear(); for(ll i=1;i<=m;i++){ ll u,v,len,cost;scanf("%lld%lld%lld%lld",&u,&v,&len,&cost); edge[u].push_back(Edge{v,len,cost}); edge[v].push_back(Edge{u,len,cost}); } scanf("%lld%lld",&s,&t); dijkstra(); printf("%lld %lld ",ans1[t],ans2[t]); } return 0; }