zoukankan      html  css  js  c++  java
  • [数学][广义欧拉定理]Exponial

     

    题目描述

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:
    In this problem we look at their lesser-known love-child the exponial , which is an operation defined for all positive integers n as
    For example, exponial(1) = 1 and  which is already pretty big. Note that exponentiation is right-associative:  .
    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    输入

    The input consists of two integers n (1 ≤ n ≤ 109 ) and m (1 ≤ m ≤ 109 ).

    输出

    Output a single integer, the value of exponial(n) mod m.

    样例输入

    2 42
    

    样例输出

    2
    欧拉降幂定理:当b>phi(p)时,有a^b%p=a^(b%phi(p)+phi(p))%p
    https://blog.csdn.net/weixin_38686780/article/details/81272848
    思路:当n>=6时,欧拉降幂定理一定适用,因为f(5)>1e9,也就是一定有欧拉降幂定理的b>phi(p)这个条件,所以f(n)%p=n^f(n-1)%p=n^(f(n-1)%phi(p)+phi(p))%p;再递归地求f(n-1)%phi(p)
    当n<=5时,f(n)%p=n^f(n-1)%p,因为不一定有f(n-1)>phi(p)成立,所以不能用欧拉降幂定理求,直接手动求出f(n)%p即可;
    从1e9递归到5很慢,但当p=1时,可以直接返回f(n)%p=0而不用递归到下一层;
    AC代码:
    #include <cstdio>
    typedef long long ll;
    
    ll phi(ll x){
        ll ret=x;
        for(ll i=2;i*i<=x;++i){
            if(x%i==0){
                ret=ret-ret/i;
                while(x%i==0) x/=i;
            }
        }
        if(x>1) ret=ret-ret/x;
        return ret;
    }
    ll qpow(ll a,ll b,ll mod){
        ll ret=1;
        while(b){
          if(b&1) ret=ret*a%mod;
          a=a*a%mod;
          b>>=1;
        }
        return ret;
    }
    ll solve(ll n,ll m){
        if(m==1) return 0;
        if(n==1) return 1;
        else if(n==2) return 2%m;
        else if(n==3) return 9%m;
        else if(n==4) return qpow(4,9,m);
        else if(n==5) return qpow(5,262144,m);//可以舍去,不知道为啥
        ll tem=phi(m);
        return qpow(n,solve(n-1,tem)+tem,m);
    }
    int main()
    {
        ll n,m;
        while(scanf("%lld%lld",&n,&m)!=EOF){
            printf("%lld
    ",solve(n,m));
        }
        return 0;
    }
    转载请注明出处:https://www.cnblogs.com/lllxq/
  • 相关阅读:
    SqlServer2005自动备份
    在Win7下运行使用BDE的程序
    Hibernate连接SqlServer时的小问题
    使用Delphi在SqlServer中对日期的设置
    Flex中连接J2ee的一个小问题
    np使用创建图像 霍夫圆检测 video操作,显示canny边缘
    Web.config的配置
    SQL 进制间如何转换
    jQuery 设置和获取HTML,文本和值
    通过LINQ to XML生成 XML
  • 原文地址:https://www.cnblogs.com/lllxq/p/9748184.html
Copyright © 2011-2022 走看看