zoukankan      html  css  js  c++  java
  • 源码解析之ConcurrentHashmap

    ConcurrentHashmap算是我看的集合源码里最难理解的了(当然ConcurrentLinkedList虽然代码少但理解起来也累),在Java1.8版本中DougLea大师巧通过妙地代码把锁粒度已经将成桶级别了,不得不说非常厉害。本文暂时贴上代码,内容后续补充。

    看ConcurrentHashmap之前要掌握的基础。

    1、对Hashmap的原理了解。

    2、Volatile关键字、CAS操作和Synchronized关键字要理解。

    3、配合网上解析和并发的书一同食用,而且要看源码里的注释,看源码前先了解其运作过程。

    推荐一篇源码解析:https://www.jianshu.com/p/487d00afe6ca

    推荐的书《Java并发编程的艺术》 集合那章

    正文

    get操作

        public V get(Object key) {
            Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
            int h = spread(key.hashCode());  //高16位与低6位散列
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (e = tabAt(tab, (n - 1) & h)) != null) {
                if ((eh = e.hash) == h) {
                    if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                        return e.val;
                }
                else if (eh < 0)  //eh小于0表示该table正在扩容,将旧table上的node移到新table上,被移过去的节点旧位置上标记一个hash<0的node
                       //find就是用this找到本该在这里的节点,然后判断是否为null返回相应值。
    return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }

    put操作

    public V put(K key, V value) {
            return putVal(key, value, false);
        }
    final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new Nul lPointerException();
            int hash = spread(key.hashCode()); //(h ^ (h >>> 16)) & HASH_BITS
            int binCount = 0;
            for (Node<K,V>[] tab = table;;) {
                Node<K,V> f; int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();  //初始化Node数组table
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//数组不为空,分配到的地址中没有node
                    if (casTabAt(tab, i, null,
                            new Node<K,V>(hash, key, value, null)))//cas操作把它加放入该地址
                        break;                   // no lock when adding to empty bin  数组每个位置上的第一个节点不需要获得锁
                }
                else if ((fh = f.hash) == MOVED)//?? 好像是扩容时被put的操作
                    tab = helpTransfer(tab, f);
                else {//数组被初始化了且地址不为空,非扩容时期的正常操作
                    V oldVal = null;
                    synchronized (f) {//拿到该位置第一个节点的对象锁
                        if (tabAt(tab, i) == f) {//再次确认头节点
                            if (fh >= 0) {//头节点hash>0??
                                binCount = 1;
                                for (Node<K,V> e = f;; ++binCount) {
                                    K ek;
                                    if (e.hash == hash &&
                                            ((ek = e.key) == key ||
                                                    (ek != null && key.equals(ek)))) {//找到相同的key,更新值
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)
                                            e.val = value;
                                        break;
                                    }
                                    Node<K,V> pred = e;
                                    if ((e = e.next) == null) {//到尾部,添加到尾部
                                        pred.next = new Node<K,V>(hash, key,
                                                value, null);
                                        break;
                                    }
                                }
                            }
                            else if (f instanceof TreeBin) { //f是tree节点,用红黑树方法
                                Node<K,V> p;
                                binCount = 2;
                                if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                        value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)//链表大于阈值,树化
                            treeifyBin(tab, i);
                        if (oldVal != null)//如果是更新值,返回oldval
                            return oldVal;
                        break;
                    }
                }
            }
            addCount(1L, binCount);
            return null;
        }
    private final Node<K,V>[] initTable() {
            Node<K,V>[] tab; int sc;
            while ((tab = table) == null || tab.length == 0) {
                if ((sc = sizeCtl) < 0) //已被别人抢先初始化了(第一个初始化的线程将sizeCtl改为-1) 进入准备状态(等待被唤醒
                    Thread.yield(); // lost initialization race; just spin
                else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if ((tab = table) == null || tab.length == 0) {
                            int n = (sc > 0) ? sc : DEFAULT_CAPACITY; //sizeCtl大于0就使用它的大小,等于0默认容量大小
                            @SuppressWarnings("unchecked")
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];//new个node数组
                            table = tab = nt;
                            sc = n - (n >>> 2);//sc=0.75n
                        }
                    } finally {
                        sizeCtl = sc;//sizeCtl为0.75n  sizeCtl像是数组扩容阈值
                    }
                    break;
                }
            }
            return tab;
        }
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { //与后面addcount()函数代码相似,这里就不解释了,直接往后看。   
            Node<K,V>[] nextTab; int sc;                //函数大意就是 满足一定条件也进入transfer方法 帮助扩容。
            if (tab != null && (f instanceof ForwardingNode) &&  //
                    (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
                int rs = resizeStamp(tab.length);
                while (nextTab == nextTable && table == tab &&
                        (sc = sizeCtl) < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                        transfer(tab, nextTab);
                        break;
                    }
                }
                return nextTab;
            }
            return table;
        }
    private final void addCount(long x, int check) {
            CounterCell[] as; long b, s;
            if ((as = counterCells) != null ||   //countercells为2e幂,应该相当于数组长度  basecount应该是实时键值对数量
                    !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
                CounterCell a; long v; int m;
                boolean uncontended = true;
                if (as == null || (m = as.length - 1) < 0 ||
                        (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                        !(uncontended =
                                U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                    fullAddCount(x, uncontended);
                    return;
                }
                if (check <= 1)
                    return;
                s = sumCount();
            }
            if (check >= 0) {
                Node<K,V>[] tab, nt; int n, sc;
                while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                        (n = tab.length) < MAXIMUM_CAPACITY) { //键值对数量超过了阈值,且小于最大值
                    int rs = resizeStamp(n); //Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
                    if (sc < 0) {//其他线程正在扩容
                        //第一个条件:因为第一个线程扩容后会将sc设为rs << RESIZE_STAMP_SHIFT) + 2),它退回去会等于rs,如果
                        //不等于说明第一个线程还没开始扩容。
                        //第二、三个条件:未知
                        //第四个条件:新数组还没创建
                        if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                                sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                                transferIndex <= 0)
                            break; //不帮助扩容
                        if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) //帮助扩容 s=sc+1
                            transfer(tab, nt);
                    }
                    else if (U.compareAndSwapInt(this, SIZECTL, sc,
                            (rs << RESIZE_STAMP_SHIFT) + 2))  //初次扩容 将值设为很小的负数
                        transfer(tab, null);
                    s = sumCount();
                }
            }
        }
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
            int n = tab.length, stride; //stride步长 切割迁移数组为小份进行转移,用来设置transferIndex
            if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)   //NCPU大于1则为  n/(8*NCPU) 否则为数组长度。但要保证大于16
                stride = MIN_TRANSFER_STRIDE; // subdivide range
            if (nextTab == null) {            // initiating  //初始化nextTab,只在扩容时不为null
                try {
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; //数组长度翻倍
                    nextTab = nt;
                } catch (Throwable ex) {      // try to cope with OOME
                    sizeCtl = Integer.MAX_VALUE;  //翻倍失败因为它是最大值了
                    return;
                }
                nextTable = nextTab;  //新数组
                transferIndex = n;    //转移指针开始为原数组长度
            }
            int nextn = nextTab.length;   //扩容数组长度
            ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); //已迁移节点 他的hash为-1
            boolean advance = true;
            boolean finishing = false; // to ensure sweep before committing nextTab
            for (int i = 0, bound = 0;;) {
                Node<K,V> f; int fh;
                while (advance) {
                    int nextIndex, nextBound;//指针指向下一个准备转移节点 界限指向划分该线程任务的终节点
                    if (--i >= bound || finishing)  //i >= bound 说明节点到达了界限,它的任务完成或 finish
                        advance = false;
                    else if ((nextIndex = transferIndex) <= 0) {  //倒序转移全部转移完成了
                        i = -1;// 准备退出迁移
                        advance = false;
                    }
                    else if (U.compareAndSwapInt
                            (this, TRANSFERINDEX, nextIndex,
                                    nextBound = (nextIndex > stride ?
                                            nextIndex - stride : 0))) { //将转移指针按步长递减(开始是原数组长度)
                        bound = nextBound;//界限=nextIndex(开始为原数组长度)-步长
                        i = nextIndex - 1;//i=nextIndex-1
                        advance = false;  //跳出
                    }
                }
                if (i < 0 || i >= n || i + n >= nextn) {//bound为0,i<0 或 i>=数组长度  或i+原长度>=现长度
                    int sc;                             //可能原因是原数组长度为0则i<0 ,或,或已经是最大值不能扩容?
                    if (finishing) {  //如果完成了就将nextTable清除,
                        nextTable = null;
                        table = nextTab;  //将扩容后数组作为当前数组
                        sizeCtl = (n << 1) - (n >>> 1);  //sizeCtl 为1.5 倍
                        return;   //返回
                    }
                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { //将SCTL 折为 sc-1成功(帮助转移时+1)现在减回去
                        if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)  //之前正常状态 将SIZECTL 设为了 rs << RESIZE_STAMP_SHIFT) + 2
                            return;                                             //现在返回去,不等则说明其他线程还没转移完
                        finishing = advance = true;
                        i = n; // recheck before commit
                    }
                }
                else if ((f = tabAt(tab, i)) == null) //如果原tab上的某地址首节点为null 则换为 fwd
                    advance = casTabAt(tab, i, null, fwd);
                else if ((fh = f.hash) == MOVED) //如果它 hash为 -1(MOVED) 说明已被移动
                    advance = true; // already processed
                else {
                    synchronized (f)  {//首节点上锁
                        if (tabAt(tab, i) == f) { //再次确认首节点
                            Node<K,V> ln, hn;
                            if (fh >= 0) { //首节点hash大于0
                                int runBit = fh & n;  //截取hash确定位置 n是扩容前长度
                                Node<K,V> lastRun = f;
                                for (Node<K,V> p = f.next; p != null; p = p.next) {
                                    int b = p.hash & n;
                                    if (b != runBit) {
                                        runBit = b;
                                        lastRun = p;
                                    }
                                }
                                if (runBit == 0) {
                                    ln = lastRun;
                                    hn = null;
                                }
                                else {
                                    hn = lastRun;
                                    ln = null;
                                }
                                for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                    int ph = p.hash; K pk = p.key; V pv = p.val;
                                    if ((ph & n) == 0)
                                        ln = new Node<K,V>(ph, pk, pv, ln);
                                    else
                                        hn = new Node<K,V>(ph, pk, pv, hn);
                                }
                                setTabAt(nextTab, i, ln);//将链好的lownode首节点放入新数组低位
                                setTabAt(nextTab, i + n, hn);//将链好的hinode首节点放入新数组高位
                                setTabAt(tab, i, fwd);//把旧数组位置上hash设为-1
                                advance = true;
                            }
                            else if (f instanceof TreeBin) { //treebin的方法
                                TreeBin<K,V> t = (TreeBin<K,V>)f;
                                TreeNode<K,V> lo = null, loTail = null;
                                TreeNode<K,V> hi = null, hiTail = null;
                                int lc = 0, hc = 0;
                                for (Node<K,V> e = t.first; e != null; e = e.next) {
                                    int h = e.hash;
                                    TreeNode<K,V> p = new TreeNode<K,V>
                                            (h, e.key, e.val, null, null);
                                    if ((h & n) == 0) {
                                        if ((p.prev = loTail) == null)
                                            lo = p;
                                        else
                                            loTail.next = p;
                                        loTail = p;
                                        ++lc;
                                    }
                                    else {
                                        if ((p.prev = hiTail) == null)
                                            hi = p;
                                        else
                                            hiTail.next = p;
                                        hiTail = p;
                                        ++hc;
                                    }
                                }
                                ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                        (hc != 0) ? new TreeBin<K,V>(lo) : t;
                                hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                        (lc != 0) ? new TreeBin<K,V>(hi) : t;
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                        }
                    }
                }
            }
        }
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0) //已被别人抢先初始化了(第一个初始化的线程将sizeCtl改为-1) 进入准备状态(等待被唤醒
    Thread.yield(); // lost initialization race; just spin
    else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY; //sizeCtl大于0就使用它的大小,等于0默认容量大小
    @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];//new个node数组
    table = tab = nt;
                        sc = n - (n >>> 2);//sc=0.75n
    }
                } finally {
                    sizeCtl = sc;//sizeCtl为0.75n  sizeCtl像是数组扩容阈值
    }
                break;
            }
        }
        return tab;
    }
  • 相关阅读:
    Python笔记_第二篇_面向过程_第二部分_4.常用模块的简单使用_import语句的解释
    Python笔记_第二篇_面向过程_第二部分_4.常用模块的简单使用_系统模块(sys)
    Python笔记_第二篇_面向过程_第二部分_4.常用模块的简单使用_time模块、datetime模块和calendar模块
    Python笔记_第二篇_面向过程_第二部分_4.常用模块的简单使用_语音合成模块(win32con)和语音控制模块(win32con)
    Python笔记_第二篇_面向过程_第二部分_4.常用模块的简单使用_窗体控制模块(win32con、win32gui)
    Python笔记_第二篇_面向过程_第二部分_4.常用模块的简单使用_操作系统模块(os)和队列模块(collections)
    python抓取百度百科点赞数等动态数据
    python 最长公共子序列
    中文unicode范围及unicode编解码
    python爬取并计算成绩
  • 原文地址:https://www.cnblogs.com/llsblog/p/10630529.html
Copyright © 2011-2022 走看看