zoukankan      html  css  js  c++  java
  • Python30 网络编程通讯协议,1.学习网络编程的目的 2.什么是互联网 3.c/s结构 4.通讯基本要素 5.OSI模型

    今日内容:
     
    网络通讯协议
    1.学习网络编程的目的
    2.什么是互联网
    3.c/s结构
    4.通讯基本要素
    5.OSI模型
     
     
    思维路线
    目的是要链接互联网中的其他计算机
    物理层 用物理介质链接其他计算机
    数据链路层 用MAC地址来通讯,但仅限于同一局域网
    网络层 用ip确定全球范围的某个局域网中的某一台计算机
    传输层 用端口来确定 某一计算机中的某一个进程
    应用层 组织自己的数据结构,例如json, xml等用于在两个应用程序间交换数据
     
    1.学习网络编程的目的
           网络编程指的是编写基于网络的应用程序
     目的:就是要编写出一套基于c/s结构的应用程序
     
     
    2什么是网络编程
    网:有多个节点相互连接组成  。渔网 蜘蛛网
    ​ 网络通常指的是计算机中的互联网,是由多台计算机通过网线或其他媒介相互链接组成的
    ​ 编写基于网络的应用程序的过程序称之为网络编程
    互联网之所以存在就是为了能让信息共享
    # 为什么要学习网络编程
    ​ 我们已经知道计算机,由硬件 操作系统,应用程序组成,有了这三个元素,就可以在自己的电脑上运行一些应用程序了,比如玩玩纸牌,扫扫雷什么的
    如果要想与其他计算机一起玩,就必须要让你的计算机和其他计算机能够互相传递数据
     
    学习网络编程就是要学习利用网络来与另一台计算机相互传输数据, 开发出支持网络通讯的应用程序,这样即使足不出户也能尽知天下事
    3.C/S构架
    建立网络需要至少两台计算机,然后使用网络来传输数据
                        一台计算机上放着要分享的数据和用于分享数据的程序,另一台计算机上运行访问数据的程序,
    3.1网络必须保证联通
    3.2我们把提供数据的一方称之为服务器(Server),把访问数据的一方称为客户端(Client)
    这就是C/S构架:
     
    电脑上要看视频就需要装看视频的程序.例如腾讯视频,它就是客户端程序,腾讯公司的机房里运行着腾讯视频的服务器程序,所以它也是C/S构架的程序
    另外浏览器也可以访问服务器上的网页数据,称之为B/S,其本质上也是C/S只不过客户端是浏览器
    4.网络通讯的基本要素
    4.1两台计算机要想通讯,必须要具备两个必备条件
        1.物理连接介质,包括双绞线,无线电波,同轴线,光纤等
        2.通讯协议(重点)
           是有发送方和接收方共同规定一套规范
     
    4.2为什么需要协议?
       目的是为了双方能正确解析数据
     
    4.3案例“为什么需要通讯协议?
    早期各个计算机厂商都有自己的一套网络通讯协议,但是各不相同,导致了不同厂商的计算机之间无法进行网络通讯,就像下图一样,如果四川人说四川话,上海人说上海话,将无法通信,必须统一说普通话!
     
    无论是四川还是上海都是中国人,如果只在中国内进行通讯,掌握了普通话就没问题了,但是要不要和其他国家的人通讯呢?
     
    与不同国家的人通讯则需要掌握不同国家的语言,但是全世界有那么多国家和语言,不可能全部掌握,这就需要大家统一下了,找一种语言作为全世界通用语言,就是英语!
     
    总结:
           **通讯协议就是相当于计算机界的通用语言,只要按照规定的标准来通讯,就能够与全世界任何一台所有计算机通讯**
     
    5.OSI七层模型
       5.1  什么是OSI
                Open System Interconnection Reference Model,开放式系统互联通信参考模型,缩写为OSI,是由国际标准组织推出的,其实就是一大堆协议,OSI把整个通讯过程划分为七层,简称OSI七层模型, 完整的七层模型,是最完整的通讯模型, 虽然很详尽,但是整个通讯流程的复杂度较高,后期为了降低学习难度,将其进行了简化, 于是有了的五层(学习的重点),和最简的四层
     
    应用程序层:
                 应用层,表示层和会话层都是属于应用程序层的,是一个整体,故将其合并为应用层,
    网络接口层:
               数据链路层和物理层组成
     
      5.2  OSI各层工作原理解析
      应用层,表示层,会话层都属于应用程序层面所以重点讨论简化后的五层;
      为了方便理解,从下往上
     1).物理层
    物理层的由来,在通讯的基本要素一节已经讨论过了,两台原本相互独立的计算机,想要通讯,必须建立物理连接,连接的方式多种多样,包括电缆,光缆,无线电等;
    11111101010     10101010101010
     
    **物理层的功能:基于电子器件发送电流信号,根据电流的高低可以对应到数字0和1,也就是二进制数据**
    2).数据链路层
    数据链路层的由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思
         1.以太网协议:
                  以太网协议(Ethernet)工作在数据链路层,其规定了电信号分组方式,以及一组电信号应该包含哪些内容
    ethernet规定如下:
    - 一组电信号构成一个数据包,叫做‘帧 ’ frame
    - 每一数据帧分成:
                    报头head和数据data两部分
      
    head包含:(固定18个字节)
    - 发送者/源地址,6个字节
    - 接收者/目标地址,6个字节
    - 数据类型(标签+以太类型),6个字节
    data包含:(最短46字节,最长1500字节)
    - 数据包的具体内容
    head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送
          2 mac地址: 
           head中包含的源和目标地址指的是什么地址呢?
    ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址
    mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)
     
             3. 广播:
    有了mac地址,同一网络内的两台主机就可以通信了
    ethernet采用最原始的方式,广播的方式进行通信,即计算机通信基本靠吼
     
             **广播有什么问题吗?
                               **如果这个网络中有100台电脑,大家都在同一时间都在互相通讯,那是什么情况,
                        相当于村头挂着100个大喇叭,大家都在使劲喊,结果是要听清楚说的什么内容非常费劲儿
                      回到计算机中,100台电脑都在那儿广播,传输速度一定是有限的,严重浪费了网络资源
                       所以,处在局域网中间的设备即交换机(上图的中间那个小东西)
                      **交换机不仅负责让网络中的计算机能够互相通信,还要优化网络传输,**
     
    如何优化呢?
    当pc1想要与pc2通讯前
    1.需要知道pc2的MAC地址,所以必须先将这个信息广播给所有的计算机,
    2.这个信息必须先交给交换机,再由交换机广播出去,
    3.pc2收到消息消息后发现目标MAC是自己,就回复数据给发送方,
    4.而回复也必须先交给交换机,此时交换机就会记录pc2的MAC地址与网口号的对应关系存到自己的缓存中,
    5.下一次在要给pc2发数据时从缓存中查找pc2的MAC地址,
    6.如果找到了就直接单独给pc2发送,不在需要广播,
    7.如果没有则重复之前的广播过程
    这一优化功能称之为自动学习功能
    `第一次链接某计算机时  必须广播获取MAC地址`
     
    `只要链接过一次 MAC地址就被交换机记录下了下一次就不用广播了`
    交换机的工作原理类似类似于早期的电话交换机,电话线打到总台,总台问你要找几号?,然后将电话线插到相应的口上
    3)网络层
        1.网络层由来:
    有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了
        2.以太网通讯存在的问题:
    世界范围的互联网是由一个个彼此隔离的小的局域网组成的,如果所有的计算机都采用以太网的广播方式来寻找其他计算机,那么一台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,这会是一种灾难,(广播风暴就是这么产生的)
     
     
    结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关;
    网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址,网络地址到底长什么样,又是如何区分子网的?
       3.IP协议
    IP协议是工作在网络层的协议,全称:Internet Protocol Address,翻译为互联网协议地址
        3.1 IP地址(重点)
    - ip协议定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
    - 范围0.0.0.0-255.255.255.255
    - 一个ip地址通常写成四段十进制数,例:192.168.10.1
    - 网络号:标识子网
    - 主机号:标识主机
    IP地址的分类:
    ​ A类保留给政府机构
    ​  1.0.0.0---126.0.0.0
    ​ B类分配给中等规模公司
    ​  128.0.0.0---191.255.0.0
    ​ C类分配给任何需要的人
    ​  192.168.0.1 - 192.168.255.254
    ​ D类用于组播
    ​ E类用于实验
    我们的电脑ip通常都是C类的,以192.168开头,正因为C类任何人都可以用
        3.2 子网掩码(了解)
         什么是子网掩码
    子网掩码是一个32位地址,用于屏蔽IP地址的一部分以区别网络标识和主机标识,并说明该IP地址是在局域网上,还是在远程网上。
    它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。
            为什么需要子网掩码
    单纯的ip地址段只是标识了ip地址的种类,无法辨识一个ip所处的子网
    例:192.168.10.1与192.168.10.2并不能确定二者处于同一子网,因为不清楚哪些位表示网络号,哪些表示主机号
             子网掩码如何判断两个ip是否属于同一个子网
    知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。
    ```python
    案例: 已知IP地址172.16.10.1和172.16.10.2的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,
       
    172.16.10.1:10101100.00010000.00001010.000000001
    255255.255.255.0:11111111.11111111.11111111.00000000
    AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
    172.16.10.2:10101100.00010000.00001010.000000010
    255255.255.255.0:11111111.11111111.11111111.00000000
    AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
    结果都是172.16.10.0,因此它们在同一个子网络。
    ```
    总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。
            3.3 IP数据包(了解) package
    ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分
    head:长度为20到60字节
    data:最长为65,515字节。
    而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据帧,分开发送了。
    ![image-20181205184151377](https://ws3.sinaimg.cn/large/006tNbRwly1fxw235oi7qj30ep03nq32.jpg)
           3.4 ARP协议(了解)
    ARP协议的由来:IP是通常是动态分配的,是一个逻辑地址,而数据传输则必须依赖MAC地址,那如何才能通过IP得到对方的MAC地址呢?  这就需要ARP协议了
    arp协议功能:广播的方式发送数据包,获取目标主机的mac地址
     
    首先明确每台主机ip都是已知的,并可以通过子网掩码来判断是否属于同一子网
    **案例1:主机192.168.1.101访问192.168.1.102**
    是同一子网内 ARP请求帧内容:
     
    1.FF:FF:FF:FF:FF:FF是一个特殊的MAC地址 交换机在看到这个地址时会将这个数据向网内所有主机进行广播
    2.192.168.1.102 收到ARP请求后 回复自己的MAC给  源MAC主机
    3.发送方(192.168.1.101)收到回复后,会将对方的ip的MAC地址映射关系存储到缓存中,以便下次使用
    ps:arp -a 可以查看ARP缓存列表
    ![image-20181205203120581](https://ws4.sinaimg.cn/large/006tNbRwly1fxw592enr3j30cq02fjrn.jpg)
    确定对方MAC地址后的数据帧内容:
    ![image-20181205204704674](https://ws3.sinaimg.cn/large/006tNbRwly1fxw5pfa7exj30hh01vt8t.jpg)
     
    **案例2:主机192.168.1.101访问192.168.111.101**
    交换机发现目标IP不在当前子网中,
    1.交换机发起ARP请求,将目标IP设置为对方的网关IP,默认情况下,网关的主机号都为1; 所以接收方(192.168.111.101)的网关为192.168.111.1
    发送方交换机发起的ARP数据帧:
     
    2.对方网关收到请求后发现ip是自己的ip则回复ARP请求,将其MAC地址告知发送方交换机,
    3.发送方交换机将,对方的网关与的MAC地址与IP存储到自己的ARP缓存中,
    4.告知发送方(192.168.1.101)对方网关的MAC地址,发送方同样将对方网关MAC与目标IP映射关系存储到,本机ARP缓存中
    至此ARP请求结束可以开始传输数据
    后续确定了MAC地址后发送的数据帧内容:
     
    总结:ARP通过广播的方式来获取MAC地址, 不在同一子网时   ARP得到的时对方网关的MAC地址,数据到达对方网关后,由网关根据IP交给对应的主机,当然对方网关获取主机MAC也是通过ARP
    ps:路由器 交换机都可以称之为网关!
     
    4).传输层(重点)
    **传输层的由来**:
    ​ 通过物理层简历链接通道
    ​ 通过数据链路层的MAC,可以定位到某个局域网中的某台主机,
    ​ 通过网络层的IP地址,子网掩码,可以定位到全球范围某一局域网下的某台主机
    **那么问题来了**:
    ​  一台计算机上是不可能只运行一个应用程序的,比如同时登陆qq和微信,那接收到的数据到底是交给微信还是qq呢?
    **答案就是**:端口号,端口是需要联网的应用程序与网卡关联的编号
    **传输层功能**:建立端口到端口的通信
    **补充**:端口范围0-65535,0-1023为系统占用端口
     
     
         TCP与UDP是工作在传输层的协议:
             TCP协议
    可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。
     
    TCP之所以可靠,是因为在传输数据前需要三次握手确认建立链接
    三次握手:
     
    三次握手的过程实际上实在确认我发的你能收到,你发的我也能收到,从而保证数据传输的的可靠性,
    链接是一个虚拟的概念,不实际存在,只要三次握手成功即表示连接建立成功!
    问题是三次握手时的确能保障数据传输是可靠的,那么握手后的数据要如何保证传输成功呢?
    **TCP协议要求在发送数据后,必须接收到对方的回复信息才能确认数据成功发送,如果一段时内没有收到回复信息,会自动重新发送,如果重试的次数过多则表示链接可能已经中断!**
     
    四次挥手:
     
    四次挥手的目的是保证双方的数据传输已经全部完成,同样是为了保证数据的完整性
    **总结**
    其优点很明显:能够保证数据传输是完整的
    缺点:由于每次都需要传输确认信息,导致传输效率降低
    场景:多用于必须保证数据完整性的场景,例如文本信息,支付信息等!
     
         UDP协议
    不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。
    ![image-20181205210637657](https://ws3.sinaimg.cn/large/006tNbRwly1fxw69rlvksj30et03rjri.jpg)
    UDP协议采取的方式与TCP完全不同,其根本不关心,对方是否收到数据,甚至不关心,对方的地址是否有效,只要将数据报发送到网络,便什么都不管了!
    **总结**
    优点:由于不需要传输确认信息,所以传输效率高于TCP协议
    缺点:传输数据可能不完整
    场景:视频聊天,语音聊天等,不要求数据完整性,但是对传输速度要求较高
    5)应用层
    应用层由来:用户使用的都是应用程序,均工作于应用层,互联网是开放的,大家都可以开发自己的应用程序,用什么样的数据格式来传输,就需要由应用程序开发者自己来制定
    应用层功能:规定应用程序的数据格式。
    例:TCP协议可以为各种各样的程序传递数据,比如SMTPl、HTTP、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。
     
     
    至此一连串高低电压就通过层层协议,变成了我们在应用程序中看到的各种数据
    #
     
    ​ 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    [其他]JAVA与C#的Socket通信
    Ext 向Ext.form.ComboBox()中添加列表的分类
    Extjs tree 过滤查询功能
    Extjs TreePanel API详解
    JVM虚拟机21: 1.8中废弃永久代(PermGen)迎来元空间(Metaspace)
    JVM虚拟机20:内存区域详解(Eden Space、Survivor Space、Old Gen、Code Cache和Perm Gen)
    Java虚拟机19:再谈四种引用状态
    Java虚拟机18:Java对象大小、对象内存布局及锁状态变化
    Java虚拟机17:互斥同步、锁优化及synchronized和volatile
    Java虚拟机16:Java内存模型
  • 原文地址:https://www.cnblogs.com/llx--20190411/p/10933412.html
Copyright © 2011-2022 走看看