zoukankan      html  css  js  c++  java
  • uva(11354) 最小瓶颈生成树+LCA

    求出最小生成树后lca找最大权即可

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    using namespace std;

    struct my{
       int v;
       int next;
       int dist;
    };

    struct node{
       int x,y;
       int dist;
       bool operator <(const node& rhs) const {
          return dist<rhs.dist;
       }
    };
    const int maxn=100000+10;
    my bian[maxn];
    node edge[maxn];
    int adj[maxn];
    int anc[maxn][20];
    int fa[maxn];
    int L[maxn];
    int fa1;
    int m,n;
    int maxcost[maxn][20];
    int cost[maxn];

    void init(){
      memset(adj,-1,sizeof(adj));
      memset(bian,-1,sizeof(bian));
      fa1=0;
      memset(fa,0,sizeof(fa));
      memset(anc,0,sizeof(anc));
      memset(maxcost,0,sizeof(maxcost));
      memset(cost,0,sizeof(cost));
    }
    void myinsert(int u,int v,int d){
         bian[++fa1].v=v;
         bian[fa1].next=adj[u];
         bian[fa1].dist=d;
         adj[u]=fa1;
    }

    void dfs(int u,int f,int dep){
         L[u]=dep;
         for (int i=adj[u];i!=-1;i=bian[i].next){
            int v=bian[i].v;
            if(v!=f){
            fa[v]=u;
            cost[v]=bian[i].dist;
            dfs(v,u,dep+1);
            }
         }
    }
    void RMQ(){
         for (int i=1;i<=n;i++){
            anc[i][0]=fa[i];
            maxcost[i][0]=cost[i];
            for (int j=1;(1<<j)<=n;j++) anc[i][j]=-1;
         }
         for (int j=1;(1<<j)<=n;j++){
                for (int i=1;i<=n;i++){
                        if(anc[i][j-1]!=-1){
                    int a=anc[i][j-1];
                    anc[i][j]=anc[a][j-1];
                    maxcost[i][j]=max(maxcost[i][j-1],maxcost[a][j-1]);
                }
            }
         }
    }

    int getans(int p,int q){
        int log;
        if(L[p]<L[q]) swap(q,p);
        for (log=1;(1<<log)<=L[p];log++);
                log--;
        int ans=-10000;
        for (int i=log;i>=0;i--){
            if(L[p]-(1<<i)>=L[q]){
                ans=max(ans,maxcost[p][i]);
                p=anc[p][i];
            }
        }
        if(p==q) return ans;
        for (int i=log;i>=0;i--){
            if(anc[p][i]!=-1&&anc[p][i]!=anc[q][i]){
                ans=max(ans,maxcost[p][i]);
                ans=max(ans,maxcost[q][i]);
                p=anc[p][i];
                q=anc[q][i];
            }
        }
        ans=max(ans,cost[p]);
        ans=max(ans,cost[q]);
        return ans;
    }

    int getfather(int x){
        if(x==fa[x]) return x;
        else return fa[x]=getfather(fa[x]);
    }
    int main(){
        int kase=0;
        while(scanf("%d%d",&n,&m)!=EOF){
                init();
            int u,v,d;
            for (int i=1;i<=m;i++){
                scanf("%d%d%d",&u,&v,&d);
                edge[i].x=u;
                edge[i].y=v;
                edge[i].dist=d;
            }
            sort(edge+1,edge+m+1);
            for (int i=1;i<=n;i++) fa[i]=i;
            for (int i=1;i<=m;i++){
                int x=edge[i].x;
                int y=edge[i].y;
                int d=edge[i].dist;
                int u=getfather(x);
                int v=getfather(y);
                if(u!=v){
                    fa[u]=v;
                    myinsert(x,y,d);
                    myinsert(y,x,d);
                }
            }
            dfs(1,-1,0);
            RMQ();
            int q,l,r;
            scanf("%d",&q);
            if(++kase!=1) printf(" ");
            while(q--){
                scanf("%d%d",&l,&r);
                printf("%d ",getans(l,r));
            }
        }
    return 0;
    }
    /*1 2 3
    2 1
    3 4 1
    4 3*/

  • 相关阅读:
    awk常用命令
    Linux 指令篇:使用者管理--sudo
    sax解析xml案例一
    DefaultHandler类
    Linux上vi(vim)编辑器使用教程
    SecureCRT上传下载数据的方法
    K近邻的决策边界以及K的影响
    KNN交叉验证,找出合适的K值
    KNN(K邻近值算法)手动版与库函数调用版
    linear_model.LinearRegression()线性回归之身高预测体重
  • 原文地址:https://www.cnblogs.com/lmjer/p/8370784.html
Copyright © 2011-2022 走看看