zoukankan      html  css  js  c++  java
  • poj1734(floyd求最小环)

    Sightseeing trip
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7483   Accepted: 2827   Special Judge

    Description

    There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

    In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

    Input

    The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

    Output

    There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

    Sample Input

    5 7
    1 4 1
    1 3 300
    3 1 10
    1 2 16
    2 3 100
    2 5 15
    5 3 20
    

    Sample Output

    1 3 5 2
    

    Source

     
    此题为求最小环问题
     
    考虑的floyd中 ,d[i][j]表示求经过不超过k-1的最短路
    所以,最小环可由min{d[i][j]+a[k][i]+a[j][k]}求的;
    如图
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    using namespace std;
    
    const int maxn=300+10;
    int ans=0x3f3f3f3f;
    int a[maxn][maxn],d[maxn][maxn],pos[maxn][maxn];
    vector<int>path;
    
    void getpath(int x,int y){
         if(pos[x][y]==0) return ;
         getpath(x,pos[x][y]);
         path.push_back(pos[x][y]);
         getpath(pos[x][y],y);
    }
    
    int main(){
        int n,m;
        scanf("%d%d",&n,&m);
        int u,v,w;
        memset(d,0x3f3f3f3f,sizeof(d));
        memset(a,0x3f3f3f3f,sizeof(a));
        while(m--){
           scanf("%d%d%d",&u,&v,&w);
           a[u][v]=a[v][u]=d[u][v]=d[v][u]=min(a[u][v],w);
        }
        for (int k=1;k<=n;k++){
            for (int i=1;i<k;i++){
                for (int j=i+1;j<k;j++){
                    if((long long)d[i][j]+a[k][i]+a[j][k]<ans){
                        ans=d[i][j]+a[k][i]+a[j][k];
                        path.clear();
                        path.push_back(i);
                        getpath(i,j);
                        path.push_back(j);
                        path.push_back(k);
                    }
                }
            }
            for (int i=1;i<=n;i++){
                for (int j=1;j<=n;j++){
                    if(d[i][j]>d[i][k]+d[k][j]){
                        d[i][j]=d[i][k]+d[k][j];
                        pos[i][j]=k;
                    }
                }
            }
        }
        if(ans==0x3f3f3f3f) printf("No solution.
    ");
        else {
            for (int i=0;i<path.size();i++){
                printf("%d ",path[i]);
            }
            printf("
    ");
        }
     return 0;
    }
  • 相关阅读:
    media query(媒体查询)和media type(媒体类型)
    移动平台的meta标签-----神奇的功效
    CSS3那些不为人知的高级属性
    为什么你应该抛弃Express的视图渲染引擎
    HTML5桌面通知:notification api
    css3特效
    Java学习笔记18(Object类)
    Java学习笔记17(面向对象十:综合案例)
    Java学习笔记16(面向对象九:补充内容)
    Java学习笔记15(面向对象八:匿名对象、内部类)
  • 原文地址:https://www.cnblogs.com/lmjer/p/8671858.html
Copyright © 2011-2022 走看看