zoukankan      html  css  js  c++  java
  • poj3696

    4794: The Luckiest Number

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 48  Solved: 8
    [Submit][Status][Web Board]

    Description

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own 
    lucky number L. Now he wants to construct his luckiest number which is the minimum among all positiv
    e integers that are a multiple of L and consist of only digit '8'.?
    找到一个最小的只含有数字8的十进制正整数,使它为L的倍数,输出其长度

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 
    ≤ L ≤ 10^12).The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) 
    followed by a integer which is the length of Bob's luckiest number. 
    If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    由x个n组成的数可以写成n(10^x-1)/9
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    typedef long long ll;
    
    ll gcd(ll a,ll b){
       return b?gcd(b,a%b):a;
    }
    
    ll getphi(ll n){
       ll ans=n;
       for (ll i=2;i*i<=n;i++){
        if(n%i==0){
            ans=ans/i*(i-1);
            while(n%i==0) n/=i;
        }
       }
       if(n>1) ans=ans*(n-1)/n;
       return ans;
    }
    
    ll quickmod(ll a,ll b,ll p){
        ll ans=1%p;
        for (;b;b>>=1){
            if(b&1) ans=ans*a%p;
            a=a*a%p;
        }
        return ans;
    }
    
    int main(){
        ll l;
        ll t=0;
        while(scanf("%lld",&l)&&l!=0){
            ++t;
            ll ans=999999999999;
            ll d=gcd(l,8);
            ll k=9*l/d;
            ll phi=getphi(k);
            if(gcd(k*9/gcd(k,8),10)!=1)
            {
                printf("Case %lld: 0
    ",t);
                continue;
            }
            for (ll i=1;i*i<=phi;i++){
                if(phi%i==0){
                if(quickmod(10,i,k)==1%k) ans=min(ans,i);
                else if(quickmod(10,phi/i,k)==1%k) ans=min(ans,phi/i);
                }
            }
            if(ans==999999999999) printf("Case %lld: 0
    ",t);
            else printf("Case %lld: %lld
    ",t,ans);
        }
    return 0;
    }
  • 相关阅读:
    多测师讲解app测试 _app原理图解_高级讲师肖sir
    多测师讲解 app_模拟器的端口号_高级讲师肖sir
    多测师讲解appium _开启注意点_高级讲师肖sir
    多测师讲解app _xpath插件_高级讲师肖sir
    多测师讲app测试 _appium实战(1)_高级讲师肖sir
    多测师讲解app测试 _ADB常用的指令_高级讲师肖sir
    jmeter分布式测试
    常用命令
    Linux安装pycharm
    请求头信息介绍
  • 原文地址:https://www.cnblogs.com/lmjer/p/9095583.html
Copyright © 2011-2022 走看看