zoukankan      html  css  js  c++  java
  • poj3696

    4794: The Luckiest Number

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 48  Solved: 8
    [Submit][Status][Web Board]

    Description

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own 
    lucky number L. Now he wants to construct his luckiest number which is the minimum among all positiv
    e integers that are a multiple of L and consist of only digit '8'.?
    找到一个最小的只含有数字8的十进制正整数,使它为L的倍数,输出其长度

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 
    ≤ L ≤ 10^12).The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) 
    followed by a integer which is the length of Bob's luckiest number. 
    If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    由x个n组成的数可以写成n(10^x-1)/9
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    typedef long long ll;
    
    ll gcd(ll a,ll b){
       return b?gcd(b,a%b):a;
    }
    
    ll getphi(ll n){
       ll ans=n;
       for (ll i=2;i*i<=n;i++){
        if(n%i==0){
            ans=ans/i*(i-1);
            while(n%i==0) n/=i;
        }
       }
       if(n>1) ans=ans*(n-1)/n;
       return ans;
    }
    
    ll quickmod(ll a,ll b,ll p){
        ll ans=1%p;
        for (;b;b>>=1){
            if(b&1) ans=ans*a%p;
            a=a*a%p;
        }
        return ans;
    }
    
    int main(){
        ll l;
        ll t=0;
        while(scanf("%lld",&l)&&l!=0){
            ++t;
            ll ans=999999999999;
            ll d=gcd(l,8);
            ll k=9*l/d;
            ll phi=getphi(k);
            if(gcd(k*9/gcd(k,8),10)!=1)
            {
                printf("Case %lld: 0
    ",t);
                continue;
            }
            for (ll i=1;i*i<=phi;i++){
                if(phi%i==0){
                if(quickmod(10,i,k)==1%k) ans=min(ans,i);
                else if(quickmod(10,phi/i,k)==1%k) ans=min(ans,phi/i);
                }
            }
            if(ans==999999999999) printf("Case %lld: 0
    ",t);
            else printf("Case %lld: %lld
    ",t,ans);
        }
    return 0;
    }
  • 相关阅读:
    类中代码执行顺序 及 组合
    初识面向对象
    内置函数及匿名函数 补充
    生成器 补充
    再回首 基本数据类型和 if语句
    day 023-python 包
    day022 python (re模块和 模块)
    day021python 正则表达式
    day 020 常用模块02
    android studio 菜鸟实战项目 之 点击事件以及动态添加
  • 原文地址:https://www.cnblogs.com/lmjer/p/9095583.html
Copyright © 2011-2022 走看看