zoukankan      html  css  js  c++  java
  • 洛谷 P4035 [JSOI2008]球形空间产生器

    洛谷 P4035 [JSOI2008]球形空间产生器

    思路

    高斯消元

    题意:在(n)维的球形空间中给定(n+1)个点,求到所有(n+1)个点的距离相等的点的坐标

    由题意易知我们要求出在(n)维空间中的一个点((x_1,x_2,x_3,…x_n)),满足:

    [forall iin[1,n+ 1],sumlimits_{j = 1}^{n}(a_{i,j} - x_j)^2 = R ]

    其中(R)是一个常数,第(i)个点的坐标为((a_{i,1},a_{i,2},a_{i,3},…a_{i,n}))

    假设有(i_1,i2in[1,n+1],i1≠i2),由(sumlimits_{j = 1}^{n}(a_{i_1,j} - x_j)^2 = R)(sumlimits_{j = 1}^{n}(a_{i_2,j} - x_j)^2 = R)

    [sumlimits_{j = 1}^{n}(a_{i_1,j} - x_j)^2 = sumlimits_{j = 1}^{n}(a_{i_2,j} - x_j)^2 ]

    展开式子得

    [sumlimits_{j = 1}^{n}(a_{i_1,j}^2 + x_j^2 - 2 *(a_{i_1,j}* x_j))=sumlimits_{j = 1}^{n}(a_{i_2,j}^2 + x_j^2 - 2 *(a_{i_2,j}* x_j)) ]

    进一步化简

    [sumlimits_{j = 1}^{n}(a_{i_1,j}^2 - 2 *(a_{i_1,j}* x_j))=sumlimits_{j = 1}^{n}(a_{i_2,j}^2 - 2 *(a_{i_2,j}* x_j)) ]

    [sumlimits_{j = 1}^{n} 2 *(a_{i_1,j} - a_{i_2,j})x_j= sumlimits_{j = 1}^{n}(a_{i_1,j}^2 - a_{i_2,j}^2) ]

    这样就转化成了一个线性方程组,由此可以用每个(i)(i+1)两两组合,得出(n)个线性方程组,则最后的矩阵为

    [egin{bmatrix}2(a_{1,1}-a_{2,1}) 2(a_{1,2}-a_{2,2}) … 2(a_{1,n}-a_{2,n})sumlimits_{j=1}^{n}(a^2_{1,j}-a^2_{2,j})\2(a_{2,1}-a_{3,1}) 2(a_{2,2}-a_{3,2}) … 2(a_{2,n}-a_{3,n})sumlimits_{j=1}^{n}(a^2_{2,j}-a^2_{3,j})\2(a_{3,1}-a_{4,1}) 2(a_{3,2}-a_{4,2}) … 2(a_{3,n}-a_{4,n})sumlimits_{j=1}^{n}(a^2_{3,j}-a^2_{4,j})\…\2(a_{n,1}-a_{n+1,1}) 2(a_{n,2}-a_{n+1,2}) … 2(a_{n,n}-a_{n+1,n})sumlimits_{j=1}^{n}(a^2_{n,j}-a^2_{n+1,j})end{bmatrix} ]

    对此矩阵进行高斯消元求解即可,由于保证有解,所以直接做就好了

    代码

    /*
    Author:loceaner
    */
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define eps 1e-8
    using namespace std;
    
    const int A = 22;
    const int B = 1e6 + 11;
    const int mod = 1e9 + 7;
    const int inf = 0x3f3f3f3f;
    
    inline int read() {
    	char c = getchar(); int x = 0, f = 1;
    	for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
    	for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
    	return x * f;
    }
    
    
    int n;
    double a[A][A], G[A][A], b[A];
    //a是输入的点坐标,G是矩阵序数数组,b是方程右边的常数
    
    int main() {
    	n = read();
    	for (int i = 1; i <= n + 1; i++) 
    		for (int j = 1; j <= n; j++) scanf("%lf", &a[i][j]);
    	for (int i = 1; i <= n; i++) 
    		for (int j = 1; j <= n; j++) {
    			G[i][j] = 2 * (a[i][j] - a[i + 1][j]);
    			b[i] = b[i] + a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
    		} 
    	for (int i = 1; i <= n; i++) {
    		for (int j = i; j <= n; j++) {
    			if (fabs(G[i][j]) > eps) {
    				for (int k = 1; k <= n; k++) swap(G[i][k], G[j][k]);
    				swap(b[i], b[j]);
    			}
    		}
    		for (int j = 1; j <= n; j++) {
    			if (i == j) continue;
    			double tmp = G[j][i] / G[i][i];
    			for (int k = i; k <= n; k++) G[j][k] -= G[i][k] * tmp;
    			b[j] -= b[i] * tmp;
    		}
    	}
    	for (int i = 1; i <= n; i++) printf("%.3lf ", b[i] / G[i][i]);
    	return 0;
    }
    
  • 相关阅读:
    P1074 靶形数独
    PYTHON-模块 sys os random shutil-练习
    PYTHON-模块-time&datetime-练习 +目录规范
    PYTHON-模块time&datetime+ 目录规范
    PYTHON-模块定义 搜索路径
    PYTHON-匿名函数,递归与二分法,面向过程编程-练习
    PYTHON-匿名函数,递归与二分法,面向过程编程
    PYTHON-有参装饰器,无参装饰器,语法糖
    PYTHON-迭代器,xxx生成式
    PYTHON-函数对象,嵌套,名称空间与作用域,闭包函数
  • 原文地址:https://www.cnblogs.com/loceaner/p/12769302.html
Copyright © 2011-2022 走看看