zoukankan      html  css  js  c++  java
  • 洛谷 P4449 于神之怒加强版

    题意

    [sum_{i=1}^{n}sum_{j=1}^{m}gcd(i,j)^k(mod 1e9+7) ]

    思路

    还是直接淦式子

    [egin{align*}&sum_{i=1}^{n}sum_{j=1}^{m}gcd(i,j)^k\=&sum_{i=1}^{n}sum_{j=1}^{m}sum_{d=1}^{min(n,m)}d^k[gcd(i,j)=d]\=&sum_{d=1}^{min(n,m)}d^ksum_{i=1}^{lfloorfrac nd floor}sum_{j=1}^{lfloorfrac md floor}[gcd(i,j)=1]\=&sum_{d=1}^{min(n,m)}d^ksum_{i=1}^{lfloorfrac nd floor}sum_{j=1}^{lfloorfrac md floor}sum_{x|gcd(i,j)}mu(x)\=&sum_{d=1}^{min(n,m)}d^ksum_{i=1}^{lfloorfrac nd floor}sum_{j=1}^{lfloorfrac md floor}sum_{x|i,x|j}mu(x)\=&sum_{d=1}^{min(n,m)}d^ksum_{x=1}^{min(lfloorfrac nd floor,lfloorfrac md floor)}mu(x)sum_{i=1}^{lfloorfrac nd floor}[x|i]sum_{j=1}^{lfloorfrac md floor}[x|j]\=&sum_{d=1}^{min(n,m)}d^ksum_{x=1}^{min(lfloorfrac nd floor,lfloorfrac md floor)}mu(x)lfloorfrac n{dx} floorlfloorfrac m{dx} floorend{align*} ]

    (P=dx),则原式等于

    [sum_{P=1}^{min(n,m)}lfloorfrac n{P} floorlfloorfrac m{P} floorsum_{d|P}d^kmu(frac Pd) ]

    显然前面的(lfloorfrac n{P} floorlfloorfrac m{P} floor)部分可以分块求解。

    现在考虑后面的一部分,令

    [g(n)=sum_{d|n}d^kmu(frac nd) ]

    容易得出这个函数是积性函数,所以我们就可以线性筛然后求出其前缀和

    然后就做完了

    代码

    /*
    Author:loceaner
    莫比乌斯反演
    */
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define int long long
    using namespace std;
    
    const int A = 5e6 + 11;
    const int B = 1e6 + 11;
    const int mod = 1e9 + 7;
    const int inf = 0x3f3f3f3f;
    
    inline int read() {
    	char c = getchar();
    	int x = 0, f = 1;
    	for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
    	for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
    	return x * f;
    }
    
    bool vis[A];
    int T, n, m, k, f[A], g[A], p[A], cnt, sum[A];
    
    inline int power(int a, int b) {
    	int res = 1;
    	while (b) {
    		if (b & 1) res = res * a % mod;
    		a = a * a % mod, b >>= 1;
    	}
    	return res;
    }
    
    inline int mo(int x) {
    	if(x > mod) x -= mod;
    	return x;
    }
    
    inline void work() {
    	g[1] = 1;
    	int maxn = 5e6 + 1;
    	for (int i = 2; i <= maxn; i++) {
    		if (!vis[i]) { p[++cnt] = i, f[cnt] = power(i, k), g[i] = mo(f[cnt] - 1 + mod); }
    		for (int j = 1; j <= cnt && i * p[j] <= maxn; j++) {
    			vis[i * p[j]] = 1;
    			if (i % p[j] == 0) { g[i * p[j]] = g[i] * 1ll * f[j] % mod; break; }
    			g[i * p[j]] = g[i] * 1ll * g[p[j]] % mod;
    		}
    	}
    	for (int i = 2; i <= maxn; i++) g[i] = (g[i - 1] + g[i]) % mod;
    }
    
    inline int abss(int x) {
    	while (x < 0) x += mod;
    	return x;
    }
    
    signed main() {
    	T = read(), k = read();
    	work();
    	while (T--) {
    		n = read(), m = read();
    		int maxn = min(n, m), ans = 0;
    		for (int l = 1, r; l <= maxn; l = r + 1) {
    			r = min(n / (n / l), m / (m / l));
    			(ans += abss(g[r] - g[l - 1]) * 1ll * (n / l) % mod * (m / l) % mod) %= mod;
    		}
    		ans = (ans % mod + mod) % mod;
    		cout << ans << '
    ';
    	}
    	return 0;
    }
    
  • 相关阅读:
    点滴
    Type.GetType() 返回null的解决办法
    DDD中的实体
    开启博客之路
    Pytorch框架学习(1)张量操作
    GitHub学习之路1
    JavaScript学习之路1
    Java&Eclipse&Maven的折腾
    Ubuntu学习之路1
    Windos下的一些命令集合
  • 原文地址:https://www.cnblogs.com/loceaner/p/12795852.html
Copyright © 2011-2022 走看看