题意
求
[sum_{i=1}^{n}sum_{j=1}^{m}gcd(i,j)^k(mod 1e9+7)
]
思路
还是直接淦式子
[egin{align*}&sum_{i=1}^{n}sum_{j=1}^{m}gcd(i,j)^k\=&sum_{i=1}^{n}sum_{j=1}^{m}sum_{d=1}^{min(n,m)}d^k[gcd(i,j)=d]\=&sum_{d=1}^{min(n,m)}d^ksum_{i=1}^{lfloorfrac nd
floor}sum_{j=1}^{lfloorfrac md
floor}[gcd(i,j)=1]\=&sum_{d=1}^{min(n,m)}d^ksum_{i=1}^{lfloorfrac nd
floor}sum_{j=1}^{lfloorfrac md
floor}sum_{x|gcd(i,j)}mu(x)\=&sum_{d=1}^{min(n,m)}d^ksum_{i=1}^{lfloorfrac nd
floor}sum_{j=1}^{lfloorfrac md
floor}sum_{x|i,x|j}mu(x)\=&sum_{d=1}^{min(n,m)}d^ksum_{x=1}^{min(lfloorfrac nd
floor,lfloorfrac md
floor)}mu(x)sum_{i=1}^{lfloorfrac nd
floor}[x|i]sum_{j=1}^{lfloorfrac md
floor}[x|j]\=&sum_{d=1}^{min(n,m)}d^ksum_{x=1}^{min(lfloorfrac nd
floor,lfloorfrac md
floor)}mu(x)lfloorfrac n{dx}
floorlfloorfrac m{dx}
floorend{align*}
]
令(P=dx),则原式等于
[sum_{P=1}^{min(n,m)}lfloorfrac n{P}
floorlfloorfrac m{P}
floorsum_{d|P}d^kmu(frac Pd)
]
显然前面的(lfloorfrac n{P} floorlfloorfrac m{P} floor)部分可以分块求解。
现在考虑后面的一部分,令
[g(n)=sum_{d|n}d^kmu(frac nd)
]
容易得出这个函数是积性函数,所以我们就可以线性筛然后求出其前缀和
然后就做完了
代码
/*
Author:loceaner
莫比乌斯反演
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 5e6 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
bool vis[A];
int T, n, m, k, f[A], g[A], p[A], cnt, sum[A];
inline int power(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod, b >>= 1;
}
return res;
}
inline int mo(int x) {
if(x > mod) x -= mod;
return x;
}
inline void work() {
g[1] = 1;
int maxn = 5e6 + 1;
for (int i = 2; i <= maxn; i++) {
if (!vis[i]) { p[++cnt] = i, f[cnt] = power(i, k), g[i] = mo(f[cnt] - 1 + mod); }
for (int j = 1; j <= cnt && i * p[j] <= maxn; j++) {
vis[i * p[j]] = 1;
if (i % p[j] == 0) { g[i * p[j]] = g[i] * 1ll * f[j] % mod; break; }
g[i * p[j]] = g[i] * 1ll * g[p[j]] % mod;
}
}
for (int i = 2; i <= maxn; i++) g[i] = (g[i - 1] + g[i]) % mod;
}
inline int abss(int x) {
while (x < 0) x += mod;
return x;
}
signed main() {
T = read(), k = read();
work();
while (T--) {
n = read(), m = read();
int maxn = min(n, m), ans = 0;
for (int l = 1, r; l <= maxn; l = r + 1) {
r = min(n / (n / l), m / (m / l));
(ans += abss(g[r] - g[l - 1]) * 1ll * (n / l) % mod * (m / l) % mod) %= mod;
}
ans = (ans % mod + mod) % mod;
cout << ans << '
';
}
return 0;
}