题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
提交链接:点击
思路:
(1)当 n < 1时,显然不需要用2*1块覆盖,按照题目提示应该返回 0。
(2)当 n = 1时,只存在一种情况。
(3)当 n = 2时,存在两种情况。
(4)当 n = 3时,明显感觉到如果没有章法,思维难度比之前提升挺多的。
... 尝试归纳,本质上 n 覆盖方法种类都是对 n - 1 时的扩展。
可以明确,n 时必定有 n-1时原来方式与2*1的方块结合。也就是说, f(n) = f(n-1) + ?(暂时无法判断)。
(4)如果我们现在归纳 n = 4,应该是什么形式?
4.1)保持原来n = 3时内容,并扩展一个 2*1 方块,形式分别为 “| | | |”、“= | |”、“| = |”
4.2)新增加的2*1 方块与临近的2*1方块组成 2*2结构,然后可以变形成 “=”。于是 n = 4在原来n =
3基础上增加了"| | ="、“= =”。
再自己看看这多出来的两种形式,是不是只比n =
2多了“=”。其实这就是关键点所在...因为,只要2*1或1*2有相同的两个时,就会组成2*2形式,于是就又可以变形了。
所以,自然而然可以得出规律: f(n) = f(n-1) + f(n-2), (n > 2)。
如果看了这一套理论还存在疑惑。可以尝试将题目改成1*3方块覆盖3*n、1*4方块覆盖4*n。
相应的结论应该是:
(1)1
*
3方块
覆
盖3*n区域:f(n) = f(n-1) + f(n - 3), (n > 3)
(2)
1
*4
方块
覆
盖4*n区域:f(n) = f(n-1) + f(n - 4),(n > 4)
更一般的结论,如果用1*m的方块覆盖m*n区域,递推关系式为f(n) = f(n-1) + f(n-m),(n > m0
代码:
class Solution { public: int rectCover(int number) { //循环迭代 int result[number+1]; result[0]=0; result[1]=1; result[2]=2; for(int i=3;i<=number;i++){ result[i]=result[i-1] + result[i-2]; } return result[number]; //用递归 /* if(number<=0) return 0; else if(number<=2) return number; else return rectCover(number-1)+rectCover(number-2); */ } };