zoukankan      html  css  js  c++  java
  • Hdu 4389 X mod f(x) (数位dp)

    X mod f(x)



    Problem Description
    Here is a function f(x):
       int f ( int x ) {
        if ( x == 0 ) return 0;
        return f ( x / 10 ) + x % 10;
       }

       Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0.
     
    Input
       The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
       Each test case has two integers A, B.
     
    Output
       For each test case, output only one line containing the case number and an integer indicated the number of x.
     
    Sample Input
    2
    1 10
    11 20
     
    Sample Output
    Case 1: 10
    Case 2: 3
     
    f(x)是x各位上的数的和,求一个范围内,有多少x使得x mod f(x) == 0。
     
    f(x)显然最多只有81,遍历81种值就可以来数位dp了。
     
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    #define ll long long
    int n;
    int dp[10][81][81][81];
    int dig[10];
    
    int dfs(int pos, int num, int mod, int sum, int lim) {
        if(pos == -1) return sum == mod && num == 0;
        if(!lim && dp[pos][sum][mod][num] != -1) return dp[pos][sum][mod][num];
        int End = lim ? dig[pos] : 9;
        int ret = 0;
        for(int i = 0; i <= End; i++) {
            ret += dfs(pos - 1, (num * 10 + i) % mod, mod, sum + i, lim && (i == End));
        }
        if(!lim) dp[pos][sum][mod][num] = ret;
        return ret;
    }
    
    int func(int num) {
        int n = 0;
        while(num) {
            dig[n++] = num % 10;
            num /= 10;
        }
        int ret = 0;
        for(int i = 1; i <= 81; i++)
            ret += dfs(n - 1, 0, i, 0, 1);
        return ret;
    }
    
    int main() {
        int t;
        int val = 0;
        scanf("%d", &t);
        memset(dp, -1, sizeof(dp)); // sb le
        while(t--) {
            int a, b;
            scanf("%d %d", &a, &b);
            printf("Case %d: %d
    ", ++val, func(b) - func(a - 1));
        }
    }
  • 相关阅读:
    day 26 python2和python3的区别 模块logging 的高级版,collections 模块,random模块
    常用模块:time,os,sys,rondom
    模块 hashlib(算法) configparser(配置) logging(日志)
    序列化,json pickle,shelve
    面向对象的封装,多态,单例模式
    属性,类方法,静态方法,反射
    面向对象的接口类 以及鸭子类型
    面向对象的继承
    面向对象的介绍
    reset internet explorer settings with registry
  • 原文地址:https://www.cnblogs.com/lonewanderer/p/5661645.html
Copyright © 2011-2022 走看看