zoukankan      html  css  js  c++  java
  • Team Contests

    Problem F

     

    Problem Description

    There are n points in a geometrical plane. If there exists a rectangle whose four vertices are among those points and every edge of the rectangle has exactly m points which are among those points, now ask how many rectangles existing in this plane could satisfy all the conditions. The edge of the rectangle should be parallel to the coordinate axes. This is a rectangle that satisfy the conditions when m=3 represented in the chart below. 

    Input

    First line contains T(T20) denoting the number of test cases.

      T cases follows for each cases: 

      First line contains two integers n,m(5n100000,m<n)

      Followed by n lines, each line contains two integers xi,yi indicates the location of the i-th point. There are no two points at the same location. (|Xi|,|Yi|10000000)

    Output

    For each case, output an integer indicate the number of rectangles that satisfy the condition.

    Sample Input

    1
    9 2
    0 0
    0 3
    0 6
    3 0
    3 3
    3 6
    6 0
    6 3
    6 6
    

    Sample Output

    4

    题意是输入n和m,给出n个点,要找出一种矩形,这种矩形的四个顶点都属于给出的顶点,并且这个矩形四条边上拥有的n个点中的点的数量都是m
    我的做法是把坐标先按x大小排序,再按y大小排序,得到两个数组xy, yx,然后以长度为m的段在xy中找到一条符合条件的边,这样可确定左上的点,通过二分在yx数组中查找左下的点,判断是否满足条件,以此类推找右下,右下,再返回左上,如果能返回就说明找到了一个矩形。

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int maxn = 1e5 + 10;
    typedef pair<int, int> pii;
    #define x first
    #define y second
    pii xy[maxn], yx[maxn];
    
    int main() {
        int t;
        scanf("%d", &t);
        while(t--) {
            int n, m, xx, yy;
            scanf("%d %d", &n, &m);
            for(int i = 1; i <= n; i++) {
                scanf("%d %d", &xx, &yy);
                xy[i] = pii(xx, yy);
                yx[i] = pii(yy, xx);
            }
            sort(xy + 1, xy + 1 + n);
            sort(yx + 1, yx + 1 + n);
            int l = 1, r = m;
            int ans = 0;
            pii tmp;
            while(r <= n) {
                if(xy[l].x == xy[r].x) {
                    int pos, pos2, pos3;
                    tmp.x = xy[l].y, tmp.y = xy[l].x;
                    pos = lower_bound(yx + 1, yx + 1 + n, tmp) - (yx);
                    //printf("check %d %d %d
    ", pos, xy[l].x, xy[r].x);
                    if(yx[pos].x == yx[pos+m-1].x) {
                        tmp.x = yx[pos+m-1].y, tmp.y = yx[pos+m-1].x;
                        pos2 = lower_bound(xy + 1, xy + 1 + n, tmp) - (xy);
                        if(xy[pos2].x == xy[pos2+m-1].x) {
                            tmp.x = xy[pos2+m-1].y, tmp.y = xy[pos2+m-1].x;
                            pos3 = lower_bound(yx + 1, yx + 1 + n, tmp) - (yx);
                            if(yx[pos3].x == yx[pos3+1-m].x) {
                                ans++;
                            }
                        }
                    }
                }
                l++, r++;
            }
            printf("%d
    ", ans);
        }
    }
  • 相关阅读:
    centos7.6 安装与配置 MongoDB yum方式
    MongoDB 介绍
    centos 关闭selinux
    前端 HTML标签属性
    前端 HTML 标签嵌套规则
    前端 HTML 标签分类
    前端 HTML body标签相关内容 常用标签 表单标签 form里面的 input标签介绍
    前端 HTML body标签相关内容 常用标签 表单标签 form 表单控件分类
    前端 HTML form表单标签 select标签 option 下拉框
    POJ 1426
  • 原文地址:https://www.cnblogs.com/lonewanderer/p/5677890.html
Copyright © 2011-2022 走看看