zoukankan      html  css  js  c++  java
  • (Ubuntu)Tensorflow object detection API——(3)创建训练/测试数据集

    1、下载labelImg工具进行标注

    https://github.com/tzutalin/labelImg

    (1)点击打开训练图片所在的文件夹

    (2)点击框选自己要识别的目标

    (3)添加标签并保存,获得同名的xml文件,如图。

    2、将文件夹内的xml文件内的信息统一记录到.csv表格中

    # Author Qian Chenglong
    
    import os
    import glob
    import pandas as pd
    import xml.etree.ElementTree as ET
    
    path = 'F:\2019视觉培训内容\armor_date' #数据所在的文件夹路径
    os.chdir(path)  #改变当前工作目录到指定的路径。
    output_name='armor_train.csv' #输出的文件名
    
    
    def xml_to_csv(path):
        xml_list = []
        for xml_file in glob.glob(path + '/*.xml'): #遍历文件夹下的所有xml文件
            tree = ET.parse(xml_file)
            root = tree.getroot()
            for member in root.findall('object'):
                value = (root.find('filename').text,
                         int(root.find('size')[0].text),
                         int(root.find('size')[1].text),
                         member[0].text,
                         int(member[4][0].text),
                         int(member[4][1].text),
                         int(member[4][2].text),
                         int(member[4][3].text)
                         )
                xml_list.append(value)
        column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
        xml_df = pd.DataFrame(xml_list, columns=column_name)
        return xml_df
    
    
    def main():
        image_path = path
        xml_df = xml_to_csv(image_path)
        xml_df.to_csv(output_name, index=None)
        print('Successfully converted xml to csv.')
    
    
    main()
    

    3、由CSV文件生成TFRecord文件

    (1)将生成的csv文件移动到F:models-master esearchobject_detectiondata文件夹下

    (2)写如下.py文件保存为generate_tfrecord.py保存到F:models-master esearchobject_detection路径

    # Author Qian Chenglong
    
    """
    Usage:
      # From tensorflow/models/
      # Create train data:
      python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv  --output_path=train.record
      # Create test data:
      python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
    """
    
    import os
    import io
    import pandas as pd
    import tensorflow as tf
    
    from PIL import Image
    from object_detection.utils import dataset_util
    from collections import namedtuple, OrderedDict
    
    os.chdir('F:\models-master\research\object_detection')  #填写models\research\object_detection\的绝对路径
    
    flags = tf.app.flags
    flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
    flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
    FLAGS = flags.FLAGS
    
    
    # TO-DO replace this with label map
    # 注意将对应的label改成自己的类别!!!!!!!!!!
    def class_text_to_int(row_label):
        if row_label == 'armor':       #自己的类别名
            return 1                   #返回的序号,必须不同
        # elif row_label == 'vehicle':
        #     return 2
        else:
            None
    
    
    def split(df, group):
        data = namedtuple('data', ['filename', 'object'])
        gb = df.groupby(group)
        return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
    
    
    def create_tf_example(group, path):
        with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
            encoded_jpg = fid.read()
        encoded_jpg_io = io.BytesIO(encoded_jpg)
        image = Image.open(encoded_jpg_io)
        width, height = image.size
    
        filename = group.filename.encode('utf8')
        image_format = b'jpg'
        xmins = []
        xmaxs = []
        ymins = []
        ymaxs = []
        classes_text = []
        classes = []
    
        for index, row in group.object.iterrows():
            xmins.append(row['xmin'] / width)
            xmaxs.append(row['xmax'] / width)
            ymins.append(row['ymin'] / height)
            ymaxs.append(row['ymax'] / height)
            classes_text.append(row['class'].encode('utf8'))
            classes.append(class_text_to_int(row['class']))
    
        tf_example = tf.train.Example(features=tf.train.Features(feature={
            'image/height': dataset_util.int64_feature(height),
            'image/width': dataset_util.int64_feature(width),
            'image/filename': dataset_util.bytes_feature(filename),
            'image/source_id': dataset_util.bytes_feature(filename),
            'image/encoded': dataset_util.bytes_feature(encoded_jpg),
            'image/format': dataset_util.bytes_feature(image_format),
            'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
            'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
            'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
            'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
            'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
            'image/object/class/label': dataset_util.int64_list_feature(classes),
        }))
        return tf_example
    
    
    def main(_):
        writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
        path = os.path.join(os.getcwd(), 'images')
        examples = pd.read_csv(FLAGS.csv_input)
        grouped = split(examples, 'filename')
        for group in grouped:
            tf_example = create_tf_example(group, path)
            writer.write(tf_example.SerializeToString())
    
        writer.close()
        output_path = os.path.join(os.getcwd(), FLAGS.output_path)
        print('Successfully created the TFRecords: {}'.format(output_path))
    
    
    if __name__ == '__main__':
        tf.app.run()
    
    
    

    转到F:models-master esearchobject_detection路径:运行如下语句

    python generate_tfrecord.py --csv_input=data/armor_train.csv  --output_path=train.record  
    
    #输入文件名和输出文件名根据自己需求修改
  • 相关阅读:
    NSInternalInconsistencyException 关于iOS的背后线程刷新页面问题
    关于IOS UIlable 一行未满就换行
    ios 提交审核时出现二进制文件无效问题
    测试中缺陷等级分类
    测试的分类
    测试是一个纸杯
    如何测试一部电梯
    一个简单的测试案例
    【JVM】【常用工具】【MAT】macbook安装MAT(独立版,非eclipse插件)
    【Canal】【MySQL】解密阿里Canal :(一)Canal工作原理
  • 原文地址:https://www.cnblogs.com/long5683/p/12885792.html
Copyright © 2011-2022 走看看