zoukankan      html  css  js  c++  java
  • 使用Eigen实现四元数、欧拉角、旋转矩阵、旋转向量之间的转换

    @

    • Vector3.normalized的特点是当前向量是不改变的并且返回一个新的规范化的向量;
    • Vector3.Normalize的特点是改变当前向量,也就是当前向量长度是1

    一、旋转向量

    1.1 初始化旋转向量

    旋转角为alpha(顺时针),旋转轴为(x,y,z)

    Eigen::AngleAxisd rotation_vector(alpha,Vector3d(x,y,z))
    
    Eigen::AngleAxisd yawAngle(alpha,Vector3d::UnitZ());
    

    1.2 旋转向量转旋转矩阵

    Eigen::Matrix3d rotation_matrix;
    rotation_matrix=rotation_vector.matrix();
    
    Eigen::Matrix3d rotation_matrix;
    rotation_matrix=rotation_vector.toRotationMatrix();
    

    1.3 旋转向量转欧拉角(xyz,即RPY)

    Eigen::Vector3d eulerAngle=rotation_vector.matrix().eulerAngles(0,1,2);
    

    1.4 旋转向量转四元数

    Eigen::Quaterniond quaternion(rotation_vector);
    
    Eigen::Quaterniond quaternion;
    Quaterniond quaternion;
    
    Eigen::Quaterniond quaternion;
    quaternion=rotation_vector;
    

    二、旋转矩阵

    2.1 初始化旋转矩阵

    Eigen::Matrix3d rotation_matrix;
    rotation_matrix<<x_00,x_01,x_02,x_10,x_11,x_12,x_20,x_21,x_22;
    

    2.2 旋转矩阵转旋转向量

    Eigen::AngleAxisd rotation_vector(rotation_matrix);
    
    Eigen::AngleAxisd rotation_vector;
    rotation_vector=rotation_matrix;
    
    Eigen::AngleAxisd rotation_vector;
    rotation_vector.fromRotationMatrix(rotation_matrix);
    

    2.3 旋转矩阵转欧拉角(xyz,即RPY)

    Eigen::Vector3d eulerAngle=rotation_matrix.eulerAngles(0,1,2);
    

    2.4 旋转矩阵转四元数

    Eigen::Quaterniond quaternion(rotation_matrix);
    
    Eigen::Quaterniond quaternion;
    quaternion=rotation_matrix;
    

    三、欧拉角

    3.1 初始化欧拉角(xyz,即RPY)

    Eigen::Vector3d eulerAngle(roll,pitch,yaw);
    

    3.2 欧拉角转旋转向量

    Eigen::AngleAxisd rollAngle(AngleAxisd(eulerAngle(0),Vector3d::UnitX()));
    Eigen::AngleAxisd pitchAngle(AngleAxisd(eulerAngle(1),Vector3d::UnitY()));
    Eigen::AngleAxisd yawAngle(AngleAxisd(eulerAngle(2),Vector3d::UnitZ()));
     
    Eigen::AngleAxisd rotation_vector;
    rotation_vector=yawAngle*pitchAngle*rollAngle;
    

    3.3 欧拉角转旋转矩阵

    Eigen::AngleAxisd rollAngle(AngleAxisd(eulerAngle(0),Vector3d::UnitX()));
    Eigen::AngleAxisd pitchAngle(AngleAxisd(eulerAngle(1),Vector3d::UnitY()));
    Eigen::AngleAxisd yawAngle(AngleAxisd(eulerAngle(2),Vector3d::UnitZ()));
     
    Eigen::Matrix3d rotation_matrix;
    rotation_matrix=yawAngle*pitchAngle*rollAngle;
    

    3.4 欧拉角转四元数

    Eigen::AngleAxisd rollAngle(AngleAxisd(eulerAngle(0),Vector3d::UnitX()));
    Eigen::AngleAxisd pitchAngle(AngleAxisd(eulerAngle(1),Vector3d::UnitY()));
    Eigen::AngleAxisd yawAngle(AngleAxisd(eulerAngle(2),Vector3d::UnitZ()));
     
    Eigen::Quaterniond quaternion;
    quaternion=yawAngle*pitchAngle*rollAngle;
    

    四、四元数

    4.1 初始化四元数

    Eigen::Quaterniond quaternion(w,x,y,z);
    

    4.2 四元数转旋转向量

    Eigen::AngleAxisd rotation_vector(quaternion);
    
    Eigen::AngleAxisd rotation_vector;
    rotation_vector=quaternion;
    

    4.3 四元数转旋转矩阵

    Eigen::Matrix3d rotation_matrix;
    rotation_matrix=quaternion.matrix();
    
    Eigen::Matrix3d rotation_matrix;
    rotation_matrix=quaternion.toRotationMatrix();
    

    4.4 四元数转欧拉角(xyz,即RPY)

    Eigen::Vector3d eulerAngle=quaternion.matrix().eulerAngles(0,1,2);
    

    绕固定坐标系转和绕当前坐标系旋转

    //
    // Created by qian on 2021/3/7.
    //
    #include "iostream"
    #include <Eigen/Core>
    #include <Eigen/Geometry>
    #include <Eigen/Dense>
    
    using namespace Eigen;
    using namespace std;
    int main(int argc, char **argv){
        Vector3d t0(1,2,3);// 初始向量
        Vector3d t(3,2,1); // 平移向量
        const float angle_x=30.0, angle_y=20.0, angle_z=10.0;
        // *************绕XYZ为当前坐标系旋转轴************
        AngleAxisd rotation_X=AngleAxisd(angle_x/180.0*M_PI,Vector3d::UnitX());
        //固定坐标系的 Y 轴先投影成 X 旋转后的旋转轴,再进行旋转
        AngleAxisd rotation_Y=AngleAxisd(angle_y/180.0*M_PI,rotation_X.inverse()*Vector3d::UnitY());
        //固定坐标系的 Z 轴先投影成 XY 旋转后的旋转轴,再进行旋转
        AngleAxisd rotation_Z=AngleAxisd(angle_z/180.0*M_PI,rotation_Y.inverse()*rotation_X.inverse()*Vector3d::UnitZ());
        // 旋转向量
        AngleAxisd rotation_vector1;
        rotation_vector1=rotation_X*rotation_Y*rotation_Z;
        cout<<"旋转角:"<<rotation_vector1.angle()*180.0/M_PI<<", 旋转轴"<<rotation_vector1.axis().transpose()<<endl;
        // 旋转矩阵
        Matrix3d rotation_matrix1(rotation_vector1);
        cout<<"旋转矩阵:
    "<<rotation_matrix1<<endl;
        // 四元数
        Quaterniond q1(rotation_matrix1);
        cout<<"四元数:
    "<<q1.coeffs()<<endl;
        // 齐次欧式变换
        Isometry3d T=Isometry3d::Identity();
        T.rotate(rotation_vector1);
        T.pretranslate(t);
        cout<<"齐次欧式变换:
    "<<T.matrix()<<endl;
        cout<<"旋转平移变换后的向量"<<T*t0<<endl;
    
        // **********绕XYZ为世界固定坐标系旋转轴**********
        AngleAxisd rotation_X2=AngleAxisd(angle_x/180.0*M_PI,Vector3d::UnitX());
        AngleAxisd rotation_Y2=AngleAxisd(angle_y/180.0*M_PI,Vector3d::UnitY());
        AngleAxisd rotation_Z2=AngleAxisd(angle_z/180.0*M_PI,Vector3d::UnitZ());
        // 旋转向量
        AngleAxisd rotation_vector2;
        rotation_vector2=rotation_Z2*rotation_Y2*rotation_X2;
        cout<<"旋转角:"<<rotation_vector2.angle()*180.0/M_PI<<", 旋转轴"<<rotation_vector2.axis().transpose()<<endl;
        // 旋转矩阵
        Matrix3d rotation_matrix2(rotation_vector2);
        cout<<"旋转矩阵:
    "<<rotation_matrix2<<endl;
        // 四元数
        Quaterniond q2(rotation_matrix2);
        cout<<"四元数:
    "<<q2.coeffs()<<endl;
        // 齐次欧式变换
        Isometry3d T2=Isometry3d::Identity();
        T2.rotate(rotation_vector2);
        T2.pretranslate(t);
        cout<<"齐次欧式变换:
    "<<T2.matrix()<<endl;
    
        cout<<"旋转平移变换后的向量"<<q2*t0+t<<endl;
        cout<<rotation_matrix1*rotation_matrix2.transpose()<<endl;
        return 0;
    }
    
  • 相关阅读:
    struts.xml文件中package元素的各大属性讲解
    strus2 struts.xml详解
    既使用maven编译,又使用lib下的Jar包
    Maven项目同时使用lib下的Jar包
    PreparedStatement ResultSet
    SearchBySql
    java 生成GUID
    获取当前时间的字符串
    C#字符串比较
    浮点数比较大小
  • 原文地址:https://www.cnblogs.com/long5683/p/14373627.html
Copyright © 2011-2022 走看看