zoukankan      html  css  js  c++  java
  • C/C++高精度运算(大整数运算)详解(含压位)

    1.高精度加法

    1.1 高精度加法

            高精度运算的基本运算就是加和减。和算数的加减规则一样,模拟竖式计算,考虑错位运算与进位处理。下面是我老师给的代码,目前比网上其他的代码要精简和巧妙。

    #include <cstdio>
    #include <cstring>
    int main()
    {
    	char a[202]={0}, b[202]={0};
    	scanf("%s%s", a, b);
    	int alen = strlen(a), blen = strlen(b), t = 0, i;
    	int a1[202]={0}, b1[202]={0};
    	for (i = 0; i < alen; i++)	a1[i] = a[alen-1-i]-'0';
    	for (i = 0; i < blen; i++)	b1[i] = b[blen-1-i]-'0';
    	alen = (alen > blen) ? alen : blen;
    	for (i = 0; i <= alen; i++)
    	t = a1[i]+b1[i], a1[i] = t%10, a1[i+1] += t/10;
    	while (!a1[i] && i) i--;
    	for(; i >= 0; i--) printf("%d", a1[i]);
        return 0;
    }

    1.2高精度加法(压位)

            int型可以存9位数字,而上述代码在数组的每个元素中只存了0-9中的一位数,可以说浪费了很多空间,而且计算机计算4+5和3333+4444用的时间是相同的,所以我们有时候用压位来节省空间和时间。其原理如下:

    • 从键盘读入大整数并存放在字符数组
    • 从后向前每八位数字存放在一个int型数组的一个元素
    • 对俩个数组的对应元素进行加减运算,有进位要进位,最后输出

    以下是我老师给的代码:

    #include <iostream>
    #include <cstring>
    #include <cstdio> 
    using namespace std;
    const int INF = 1E8;
    struct Data{
    	int u[50], l;
    	Data(){
    		memset(u, 0, sizeof(u)), l = 0;
    	}
    	void change(string a){
    		int len = a.size(), k = len / 8, i = 0;
    		l = k + (len%8 > 0);
    		for (len; len > 8; len -= 8)
    			sscanf(a.substr(len-8, 8).c_str(), "%d", &u[i++]);//注释一
    		if (len > 0) sscanf(a.substr(0, len).c_str(), "%d", &u[i]);
    	}
    	void print(){
    		int k = l-1;
    		printf("%d", u[k--]);
    		while (k >= 0) printf("%8.8d", u[k--]);//注释二
    		printf("
    ");
    	}
    }a, b;
    int main(){
    	string aa, bb, ac;
    	cin >> aa >> bb;
    	int ka = 0, kb = 0, i;
    	a.change(aa), b.change(bb);
    	for (i = 0; i < 50; i++)
    		a.u[i] += b.u[i], a.u[i+1] += a.u[i] / INF, a.u[i] %= INF;
    	for (i = 49; a.u[i]==0 && i>0; i--);
    	a.l = i + 1;
    	a.print();
    	return 0;
    }

    2.高精度减法

    2.1 高精度减法

            原理和加法一样,需要不过考虑的不是进位,而是借位

    代码如下:

    #include <cstdio>
    #include <cstring>
    int main()
    {
    	char a[202]={0}, b[202]={0};
    	scanf("%s%s", a, b);
    	int alen = strlen(a), blen = strlen(b), t = 0, i;
    	int a1[202]={0}, b1[202]={0};
    	for (i = 0; i < alen; i++)	a1[i] = a[alen-1-i]-'0';
    	for (i = 0; i < blen; i++)	b1[i] = b[blen-1-i]-'0';
    	alen = (alen > blen) ? alen : blen;
    	for (i = 0; i <= alen; i++)
    	t = a1[i]-b1[i], t<0?(t+=10,a1[i+1]--):t, a1[i] = t;
    	while (!a1[i] && i) i--;
    	for(; i >= 0; i--) printf("%d", a1[i]);
        return 0;
    }

    2.2 高精度减法(压位)

            减法和加法大同小异,如果你会了加法,那么减法也不足为惧。以下代码是我自己写的,和我老师写的有一定差距,如有不足请指出。

    #include <iostream>
    #include <cstring>
    #include <cstdio> 
    using namespace std;
    const int INF = 1E8;
    struct Data{
    	int u[50], l;
    	Data(){
    		memset(u, 0, sizeof(u)), l = 0;
    	}
    	void change(string a){
    		int len = a.size(), k = len / 8, i = 0;
    		l = k + (len%8 > 0);
    		for (len; len > 8; len -= 8)
    			sscanf(a.substr(len-8, 8).c_str(), "%d", &u[i++]);
    		if (len > 0) sscanf(a.substr(0, len).c_str(), "%d", &u[i]);
    	}
    	void print(){
    		int k = l-1;
    		printf("%d", u[k--]);
    		while (k >= 0) printf("%8.8d", u[k--]);
    		printf("
    ");
    	}
    }a, b;
    int main(){
    	string aa, bb, ac;
    	cin >> aa >> bb;
    	int ka = 0, kb = 0, i,t;
    	a.change(aa), b.change(bb);
    	for (i = 0; i < 50; i++)
    		t = a.u[i] - b.u[i],(t < 0)?(t+=INF,a.u[i+1]--):t,a.u[i] = t; 
    	for (i = 49; a.u[i]==0 && i>0; i--);
    	a.l = i + 1;
    	a.print();
    	return 0;
    }
    以上的俩个代码都只能当且仅当a>=b时才能正常工作,望注意。

    3.高精度乘法

    3.1 高精度乘法

            这个方法出自吴永辉老师。此代码简直让我拍手叫绝。

    原理如下:

                            3    2    1    0                    ——>数组a、b的下标

                            3    4    5    6       i            ——>数组a[]

                        *  1    2    7    8       j            ——>数组b[]

                   ————————————

                     2    7    6    4    8 

                2    4    1    9    2

                6    9    1    2

          3    4    5    6

    ——————————————————

          4    4    1    6    7    6    8                ——>数组c[]

          6    5    4    3    2    1    0        i+j    ——>数组c的下标

    以上是俩个四位数相乘的竖式计算方法。可以看出,数的右面对齐,从低位向高位计算,计算结束后将一列结果相加即为答案。那么把俩个数从右向左依次标记为0、1、2...n,那么每一列的结果就是第一个数的下标为i的数与第二个数的下标为j的数相乘的结果,其存放在第i+j列。最终结果是每一列相加,就是i+j这一列所有数相加。所以可以用c[i+j] += a[i]*b[j]。

    for(int i = 0;i < LA-1;i++)
    for(int j = 0;j < LB-1;j++)
    	c[i+j] += a[i]*b[j];
    for(int i = 0;i < LA+LB;i++)
    if(c[i] >= 10){
    	c[i+1] += c[i]/10;
    	c[i] %= 10; 
    }

    3.2 高精度乘法(压位)

  • 相关阅读:
    机器学习的分类与主要算法对比
    关于在JSP页面中为什么一定要用${pageContext.request.contextPath}来获取项目路径,而不能用${request.contextPath}?
    Spring Boot静态资源处理
    Tomcat关闭后,重新启动,session中保存的对象为什么还存在解决方法
    Tomcat 7源码学习笔记 -9 tomcat重启后session仍然保留
    mysql-sql语句中变量的使用
    js检测对象中是否存在某个属性
    mysql :=和=的区别
    sql面试题(学生表_课程表_成绩表_教师表)
    ddd
  • 原文地址:https://www.cnblogs.com/long98/p/10352254.html
Copyright © 2011-2022 走看看