第七章 排序
一、插入排序:
1、直接插入排序:
//直接插入排序时间复杂度:O(n*n);空间复杂度:O(1);稳定的(指相同元素相对位置不变)
void insertSort(int A[], int n){
int i, j;
for (i = 1; i <n; i++){
int tmp = A[i];
for (j = i - 1; j >= 0 && tmp < A[j]; j--)
A[j + 1] = A[j];
A[j + 1] = tmp;
}
}
2、折半插入排序:
//折半插入排序 时间复杂度:O(n*n)空间复杂度:O(1)稳定的
void insertSort(int A[], int n){
int i, j,high,low,mid;
for (i = 1; i < n; i++){
int tmp = A[i];
low = 0; high = i - 1;
while (low<=high)
{
mid = (low + high)/ 2;
if (A[mid] > tmp) high = mid - 1;
else low = mid + 1;
}
for (j = i - 1; j >high; j--)
A[j + 1] = A[j];
A[high+1] = tmp;
}
}
3、希尔排序:
//希尔排序时间复杂度:O(n*n)空间复杂度:O(1)不稳定
void shellSort(int A[], int n){
int i, j, dk;
for (dk = n / 2; dk >= 1; dk = dk / 2){
for (i = dk; i < n; ++i){
int tmp = A[i];
for (j = i - dk; j >= 0 && tmp < A[j]; j -= dk)
A[j + dk] = A[j];
A[j + dk] = tmp;
}
}
}
总结:
直接插入排序时间分为三部分:n次遍历、后移次数、比较次数,折半插入排序减少了比较次数,希尔排序可能减少了比较和后移次数;
二、交换排序
1、冒泡排序:
//冒泡排序 时间复杂度:O(n*n) 空间复杂度:O(1)稳定的
void bubbleSort(int A[], int n){
int i, j;
bool flag;
for (i = 0; i < n - 1; i++){
flag = false;
for (j = n - 1; j > i; j--){
if (A[j] < A[j - 1]){
swap(A[j-1],A[j]);
flag = true;
}
}
if (!flag){
return;
}
}
}
2、快速排序:
//快速排序时间复杂度:O(N*log2 N)空间复杂度:O(1)不稳定
int partition_(int A[], int low, int high){
int p = A[low];
while (low<high)
{
while (low<high&&A[high] > p) high--;
while (low<high&&A[low] < p) low++;
if (low < high){
swap(A[low], A[high]);
if (A[low] == p&&A[high] == p)
low++;
}
}
A[low] = p;
return low;
}
void quickSort(int A[], int low, int high){
if (low < high){
int pivotpos = partition_(A, low, high);
quickSort(A,low,pivotpos -1);
quickSort(A,pivotpos+1,high);
}
}
三、选择排序:
1、简单选择排序:
//简单选择排序 时间复杂度: O(n*n)空间复杂度:O(1)不稳定的
void selectSort(int A[], int n){
int i, j, min;
for (i = 0; i < n-1; i++){
min = i;
for (j = i + 1; j < n; j++)
if (A[j]<A[min]) min = j;
if (min != i) swap(A[i], A[min]);
}
}
2、堆排序:
//堆排序 时间复杂度:O(N*log2N)空间复杂度:O(1)不稳定的
void adjustDown(int A[], int k, int len){
int tmp = A[k];
for (int i = 2 * k + 1; i < len; i = 2 * i + 1){
if (i<len - 1 && A[i] < A[i + 1])
i++;
if (tmp >= A[i]) break;
if (A[i] > tmp){
A[k] = A[i];
k = i;
}
}
A[k] = tmp;
}
void buildMaxHead(int A[], int len){
int i;
for (i = len / 2-1; i >=0; i--)
adjustDown(A,i,len);
}
void heapSort(int A[], int len){
buildMaxHead(A,len);
for (int i = len - 1; i > 0; i--){
swap(A[i],A[0]);
adjustDown(A,0,i);
}
}
//向上调整
void adjustUp(int A[], int k){
int tmp = A[k];
int i = k / 2;
while (i >= 0 && tmp > A[i]){
A[k] = A[i];
k = i;
i = i / 2;
}
A[k] = tmp;
}
四、二路归并排序:
//二路归并排序时间复杂度O(N*log2N)空间复杂度O(n) 稳定的
int n = 10;
int* B = (int*)malloc((n + 1)*sizeof(int));
void merge(int A[], int low, int mid, int high){
int i, j, k;
for (k = low; k <= high; k++)
B[k] = A[k];
for (i = low, j = mid + 1, k = i; i <= mid&&j <= high;k++){
if (B[i] <= B[j])
A[k] = B[i++];
else
A[k] = B[j++];
}
while (i <= mid) A[k++] = B[i++];
while (j <= high) A[k++] = B[j++];
}
void mergeSort(int A[],int low,int high){
if (low < high){
int mid = (low + high) / 2;
mergeSort(A,low,mid);
mergeSort(A,mid+1,high);
merge(A, low, mid, high);
}
}